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2 Pl@ntNet

A citizen science platform that uses machine learning to
help people identify plants with their mobile phones
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Key concept of Pl@ntNet: Cooperative Learning
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</ Pl@ntNet Al model

Model trained with the cross-entropy loss on the set of valid
observations (Jean Zay, a few days of training)

7 Softmax output (46K-dimensional)
R B D 55 3 (f ( ) )

Production version:  Convolutional Neural Network (IV3) — Top1 accuracy = 0.70
Beta version: Vision transformer (BEIT) — Top1 accuracy = 0.73



A difficult problem: uncertainty

Aleatoric uncertainty Epistemic uncertainty
Ambiguity (irreducible) Long-tail distribution
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V. Pl@nt\et Returned results: set-valued

Pointwise error control

Threshold the accumulated
probability

Zal ) >0

Papaver rhoeas L. 0.63
Papaver somniferum L. 0.76
Papaver californicum A. 0.87

Average set size control

Threshold the probability so as to
return K classes on average

oi(f(z)) >0

Papaver rhoeas L. 0.63
Papaver somniferum L. 0.13
Papaver californicum A. 0.11

— Average-K classification
(proof of consistency)


https://identify.plantnet.org/fr/the-plant-list/species/Glaucium%20corniculatum%20(L.)%20Curtis/data
https://identify.plantnet.org/fr/the-plant-list/species/Glaucium%20corniculatum%20(L.)%20Curtis/data
https://identify.plantnet.org/fr/the-plant-list/species/Glaucium%20corniculatum%20(L.)%20Curtis/data
https://identify.plantnet.org/fr/the-plant-list/species/Glaucium%20corniculatum%20(L.)%20Curtis/data

Use of regional or thematic floras

Restricting the hypothesis space to a particular flora allows improving the
identification accuracy

p(ylz, flora) = p(y|x)
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Use of regional or thematic floras

Identify in

World flora

Schismus arabicus Nees "
% 74.23%
Arabian grass Poaceae -

=5 Compare pictures () It's tha right species

Schismus barbatus (L.) Thell.
Arabian grass Poaceae

17.16%

=5 Compare pictures () It's the right species



Use of regional or thematic floras

Schismus arabicus Nees
Arabian grass

Identify in

West Europe

Schismus barbatus (L.) Thell.

Arabian grass

Poaceae

> Compare pictures

(& It's the right species




M. Pl@ntNet Similarity search

User’s visual control =
uncertainty reduction [

— S hash-based ]
Index

v
query results = similar pictures
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convolutional neural network

— Sub-linear algorithm based on locality sensitive hashing
Joly, A., & Buisson, O. (2011, June). Random maximum margin hashing. In CVPR 2011 (pp. 873-880). IEEE.



Contribution

Users can contribute their observations
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Revision

Users can revise observations of other users.
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Cooperative learning

The weight of a user in the decision process
depends on his estimated expertise

r1: Species A
r2: Species B
A M

A & K 8 T
-

S\
b, —_—s = < — "
€[>
W, S r3: Species A

Most probable species Yy = argmax 7); (z)
j

Validation decision
(valid — used by Al)

ny(x) >0

Database




L Pl@ntNet Data

750M raw observations (=queries)

Geo-localized
(48%)

valid
ations

ANONYMOUS (cc0)

AUTHENTICATED (cc-by-sa)

16.6M shared
observations

User opted in to share it
publicly (GDPR compliant)

Correct species name

+ sufficient confidence score |- Used to train the Al

+ sufficient quality score




QL Pl@ntNet Data shared in GBIF

- Top-4 data provider to GBIF (world’s largest infrastructure for biodiversity data)
- Valid observations + trusted queries identified by the Al (Al score>0.9)
- Additional quality filters: potted & cultivated plants removal, region-based filtering (Kew POWO)
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(87% identified by Al, 13% by humans)
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2 Pl@ntNet Latest major developments

2 API & Cos4Cloud o - Eumorcanorey

® A secured APl providing developers programmatic access to Pl@ntNet engine
e 6K developer accounts (researchers, companies, citizen observatories)
® Integrated in European Open Science Cloud (EOSC)

Plnt = (&)

API Service | 5 Q8¢ Bee o S~ soildiag
for professionals . ® Keeping Bees. Together. . A —b
P> Coogeriay Il & Ap

> soildiag@verdeterredigital.fr

Create an account [ISTEMEe

API Documentation

20
GET/POST examples ~ OpenAPidoc.  Expose APlkey  Additional dat: 2

Getting started




Ve Pl@ntNet Latest major developments

Pl@ntNet offline: identify plants without connection

User

Embedded Al model
(compressed) Al model ’
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PART Il
Latest cooperative learning algorithm



Cooperative Learning algorithm in detail

The most probable label of an observation is determined with a
weighted majority voting rule:

Species A
Spemes B
An observation
p * } 1

’
\'-')w —— i = argmax E w,1(y = k)
pecies A U
w0 ue
U, = Set of users who provided a

label 1, for the observation 2;



Cooperative Learning algorithm in detalil

Unlike most state-of-the-art crowdsourcing approaches, the weight of a
user is not determined by his estimated probability of success

Inferred confusion matrix of a user u

08 01 01
U _

7T( ) - | 02 06 01

01 01 07

wy, = Tr(r™
Problems: W T(ﬂ' )

- Not tractable for 45K classes

- Very sparse data for most users and species

- A user might be highly successful but only on a few very common species
- User scores interpretability (people love leaderboards)




Cooperative Learning algorithm in detalil

Rather, the weight of a user in PI@ntNet is a function of the estimated
number of species he is able to identify

we =9(n,) M ={J Yy = v}
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Cooperative Learning algorithm in detail

Rather, the weight of a user in PI@ntNet is a function of the estimated

number of species he is able to identify
Wy = g(Nu)
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Cooperative Learning algorithm in detalil

Practically, 11,, is estimated from the set of valid observations for which the
user has suggested the correct species first

— , . " u — ® —
ne = {7 : Fiy; = gl v(zs) = 1}]
Where 2)(513@) is a function that determines if an observation is valid or not:

o(z;) = {1 iof sy, () > 0,m,(x;) >0,

0 / otherwsise \

Confidence score (~ quantity of votes) Agreement score (~ species proba)

w, (Y = vy;) () — wyz(ajz)
; (v =y Ny, () S~ (1)




Cooperative Learning algorithm in detalil

Parameters are estimated through an iterative algorithm similar to
expectation-maximisation :

Initialization:
W, = Wqo for all users

Repeat until convergence:
;= ¢ ul v—k Most likely label
yi = argmax %{; W, 1(y; ) ost likely la es( |
Sy (T:) = Z w, 1y =y:)  ny(25) = "

uelU;

v(x;) = L if sy, (@) > 9’77?” (1) > O Determine valid observations
0 otherwise

Confidence and
Zk W (332) agreement scores

Ny = |{] =) ”g;u = ’gz| ?}(332) = 1}| Wy = g(nu) Update user weights



Cooperative Learning algorithm in detalil

A new iteration is ran each night but only on new incremental data:

1 - Update user weights for
- users who voted since last iteration
- users who created new observation(s) since last iteration
- users whose observations received a vote since last iteration

2 - Compute validity score for
- new observations created since last iteration
- updated observations since last iteration (including the ones with new votes)
- observations having a vote whose author has had its weight modified since last
iteration

Computation time: from 2 to 3 hours depending on the volume of new data (e.g.
longer the week-end)



Cooperative Learning algorithm in detail

Valid observations (i.e. v(x;) = 1) are the only ones:
- used for training the Al
- appearing in Pl@ntNet galleries
- appearing in the identification results (visual similarity search)

Identification - Résulta
S

Papaver argemone

D vV o 0 TO T o

A valid observation can be revised at any time within the
application so that the label noise can be reduced afterwards



Cooperative Learning algorithm in detalil

New observations

Appear only once in the contribution stream
— they can be revised/confirmed on the fly (low rate)

They can be directly valid if the author has a
sufficient weight

wu 0—> Syz Zw]‘yl_yl 9
Such users are said self-val/datmg (0 =2.0)

Obs of self-validating users can be unvalidated by a
user with similar weight: Wy < ¢ (0, —0.7)

Wy, + Wy




Q- Pl@ntNet Contributors

4M users accounts, 1M active contributors

10

Top 10 contributors

Weight
78.14
65.43
60.76
53.81
52.45
51.35
49.3
49.06
46.46

46.25

Species count
6932
4923
4269
3381
3219
3091
2859
2832
2552

2530

Observations

17627

16408

15868

13653

11567

11209

10463

9964

9210

8757

User

Diego Alex

Daniel Barthelemy
Liliane Roubaudi
Maarten Vanhove
Yoan Martin
Dieter Albrecht
Michal Svit
William Coville
Martin Bishop

Sylvain Piry

Typical contributor
Weight = 9.0

2L Rossen Vassilev

Stats
Rank 14062
Observations Votes
¢ Observed « Votes 54
species 134

o Contributions
143
¢ Images 463
Queries

« |dentification requests 520
e Images 1005



Active learning

Corydalis cava (L.) Schweigg. & Korte

Hollowroot, Hollow Root, Hollow Wort, Holewort, Brebenea

Determination (users) @) Determination (Pl@ntNet) @)  Malformed observation € Organ @

Help us to improve the content of this gallery.

We believe that the determination of these images may be wrong

Qo
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00
200
00
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Geolocated (public data) 19




Active learning

Corydalis cava (L.) Schweigg. & Korte

Hollowroot, Hollow Root, Hollow Wort, Holewort, Brebenea

We believe that the determination of these images may be wrong. x

v 0o ge
#© wo To 88 i

Determination (users)
Corydalis cava (L.) Schweigg. &
Korte 0.7

+ Corydalis solida (L.) Clairv. 0.3

Nut guuvucatou 14




Active learning
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Other collaborative tools

2& Groups

Plant species of the Salar of Uyuni
EALCICEICTE: XY 374 observations ] 70 species |

Members 6 22 | 2 Suggest members ‘

y Fabien Anthelme
= Administrator - Group creator

Members

ARTHUR SANGUET
Member

7‘ Julien Champ

Member

a Philippe Choler

Member

Pierre Bonnet
Member

+_ Rosalsela Meneses - LPB
=7 Member

Share  https:/fidentify.plantnet.org/grc

Top contributors

s Else Nolden
=% 33 observations

s DraZen Vranesevi¢
= 8 observations

6 Dieter Wagner
6 observations

« Tela Botanica
=< 16 observations

0 Wing Net.
6 observations

Gradwohl Markus
6 observations

A€

Load more

Else Nolden
\]
* 63 votes
W marie pierre Ruf
=¥ 29 votes

Sanchez Garcia Juan...

24 votes

Member

Leave the group

This group provides a map of observations. This group only accepts observations within a given area.

Leafiet | © Er, -cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Commnity.

Top identifiers

¢ Palo Rapos
=¥ 51votes

o Dieter Wagner
28 votes

Peter Struwwel
23 votes

User page

Observations 7z0

Export my observations to CSV format XLSX

alexis joly.
Mar 15,2023

alexis joly.
Feb 6, 2023

@ alexis joly

O0%YCa2
Unidentified

 Observation details

O0% w2

Prunus dulcis (Mill.) D.AWebb

alexis joly.
Sep 26, 2022

Almond Rosaceae

) Observation details

Bupleurum fruticosum L.
Shrubby Hare's-car Apiaceae

Messages

@ L davidhocken

English : Hacquetia epipactis (Scop.)
DC. is a synonym of Sanicula epipactis

w davidhocken

English :

Rank 985

Contribute to Pi@ntNet Batch import

Options 18838

alexis joly.
Mar 15, 2023

Veronica cymbalaria Bodard
Pale speedwel Plantaginaceae

 observation detais

alexisjoly 0% Un
Sep 26, 2022 Oo0%

Liquidambar styracifiua L.
Swestgum Alingiaceas

& Observation dtails

alexis joly Ry
Sep 26,2022 00w

Gleditsia triacanthos L.

Honey-locust Fabaceae

fya2heuwes

Hya2hewes

powo.science. kew.orgftaxonfurn:isid:ip

ni.org:names:847830-1



PART Il
Deep Species Distribution Modeling



Objective: which species are present in a
given location and why ?

Raw species occurrence data needs to be interpolated in space
and time:

Many plant occurrences at world scale But very few locally for most species

Montpellier

Viola canina L.




Predicted distribution

Species Distribution Models (SDM)

Data

Modelled
environmental
A distribution

Model 3 ‘14’ . projection
o [¥o* H 1

Environment

Plant Environmental space Geographical
observations space



Species Distribution Models (SDM)

Motivations
Help conservation plans
Invasive plant monitoring
Learn about species preferences

Simulation under climate change



A deep learning approach to species distribution modelling

Christophe Botella et al., "A deep learning approach to species distribution modelling." Multimedia Tools
and Applications for Environmental & Biodiversity Informatics. Springer, 2018. 169-199.

- NN can model complex relationships from heterogeneous data sources
- Learn ajoint representation spacef(x)of the environment for all species (= latent variables)
- Capturing multi-scale spatial information thanks to convolutional layers (CNN)

Species probabilities
(N species)

10x10 km quadrats



Understanding Deep Convolutional SDMs

Benjamin Deneu et al., "Convolutional neural networks improve species distribution modelling by capturing the
spatial structure of the environment", PLOS Computational Biology

- Better knowledge transfer to least frequent species

Model
Architecture: Inception v3
Loss: categorical loss

Data

Source: GBIF

Type: occurrences

Nb of occurrences: 97 683

Nb of species: 4520

Environmental data:

33 geographic rasters (19 bioclimatic, 1

1 hydro, Corine Land Cover)

evapotranspiration, 10 pedologic, altitude,

top30 accuracy

1.0

0.9 4

0.8 5

0.7 4

0.0

—— Deep Conv. SDM
——— Random Forest
—— Boosted Trees

1000 2000
species ordered by frequency



Understanding Deep Convolutional SDMs

Benjamin Deneu et al., "Convolutional neural networks improve species distribution modelling by capturing the
spatial structure of the environment”, PLOS Computational Biology

- Better knowledge transfer to least frequent species

Occqrr_ences in Predicted distribution Comparison with another
training set data source (INPN)

‘‘‘‘‘‘‘‘‘‘‘

Senecio cacaliaster Lam. T L
PO, o :‘“ o> o A

Ulva lactuca L. Vil b7 ey
- By dpte m“'z' e .



Deriving knowledge from Deep SDMs

Benjamin Deneu et al., "Convolutional neural networks improve species distribution modelling by capturing the
spatial structure of the environment”, PLOS Computational Biology

- Spatial structure of the local environment plays an important role in
species distribution (landscape, barriers, relief, etc.)

0.40 Complete information (structure+values)
—— CNN
—— DNN /

Ll Rotations
Permutations

0.30 4~ —— Structure
—— Mean

Only structural information
(standardized values)

Only values (no structure)

mean topk accuracy by species
o
N
o

0 é 1I0 1'5 2‘0 2I5 36 3l5 4'0 4‘5 SIO SIS 6I0 6I5 7‘0 7I5 8'0 8I5 9IO 9‘5 100 NO Spatlal Informatlon (Central Value)
k

Mean value (no structure) .




How to train Deep SDM models ?

Input data: U target: Y

- Abundance data (very hard to produce) 0l12 0 4 0 0 32 o0

Task: predict @ — fg(x) - Rd WO d & 6 ik

- Presence [ absence data (hard to produce) 0 1.0 1 0 0 1 o0

raskpredict § = fy(2) € [0,1]7 g 0 e L& 0 i
- Presence only data (more data available)

Task: predict g — fg(aj) c {1, ,d}

1

G



Predicting species assemblages from presence only data

Given presence-only occurrences

(331, ’yl), ([Ent, yn-t) sampled from [Py y

The assemblage of species likely to be present conditionally to &z can be defined as:

Siz) ={keY : Pxy(Y =klX =2) > A}
If we have an estimator : 7). (z) of Py (Y = k| X = x)

We can define the following plug-in estimator of the assemblage:

Sx(x) =1k e Y :m(x) > A}



Predicting species assemblages from presence only data

How to get a good estimator 7’}A(z) of the conditional probability ?

— Train a model using the negative log-likelihood = a strictly proper loss, i.e.
it is minimized only when the model predicts the true 7. (z) = Px v (Y = k| X = x)

ki{..\
: . . , L exp( fi(x neural
arg min E —log 77yi(;z?.l¢) e.g. with "I']k(;'l?) — ]( g (]. ) ) - = net\t/vortk
¢ 45 S eap(f](x)) o
In brief:
- Our plug-in predictor simply consists in thresholding the softmax output
of a neural network trained with the so-called cross-entropy loss

Sx(z) ={ke Y m(z) > A}

- Itis proved that S)\(;‘z?) assymptotically converges towards S/*\(Z’)




2L Pl@nt)\et

Identify Explore Contributions Groups BETA

GeoPl@ntNet

Discover plant biodiversity around you and help protect it better

7
i

J \ E \ )
|+ 0 [r Bean & icion » x| 'v¥ Species Habitat Conservation Ecosystem  Threat

ra s
|4 A% Results 100
1 Export data to CSV format XLSX
Sort by
GBIF :

Juniperus oxycedrus L / -

Berried-cedar
4,881(J) 3,443 observations Cupressaceae

Villeneuve-

I/‘
<M |
I&sMaguelone ™ i

GBIF 50 Q

Quercus ilex L \ -

Holm Oak
11,746 GJ 8,480 observations Fagaceae

Fronti ﬁa_V
> mI - g0 ,\/} == | eaflet | © OpenStreetMap contributors

Right click on the map to move the marker (or drag / drop)
‘ Q search \ Al PREDICTION SCORE 3.81 % GBIF 50 Q

Q = -2 =2 Q@ GeoPl@ntNet (D English ~ (@) alexis joly ~ ¥y O



Mapping biodiversity conservation indicators

From the species assemblage
Sx(z) =4k e Y n(zx) > A}

We can compute indicators such as:
- The proportion of endangered species (e.g. on IUCN red list)
- The proportion is woody species
- The diversity of species (e.g. Shanon index)

We can construct maps of such indicators at very high resolution by
computing SA(L'Z?) for all Z; on a dense spatial grid



Proportion of endangered species (Orchid Family, 14K species)

1x1 km resolution (view online) PhD of Joaquim Estopinan

‘ - B



https://mapviewer.plantnet.org/?config=apps/store/demo.xml#

PART IV
Other ongoing stuff



GeolLifeCLEF challenge 2023

OUTPUT
PREDICTIONS

INPUT
PREDICTORS

Presence / absence of 10K plant species

0

0|1

1

0

1

0|

¥ O oo

ORI R A SR

—

#* ¥ O

B YKk

5 Millions training
samples

T N T

Multi-spectral time
series (Landsat)

Satellite image
(sentinel 2)

Climatic time
series (Chelsa)

Environmental rasters
(land use, human
footprint, bioclim, soil)

ZGUARDEN

JUNE 18-22, 2023

CVPR

2t A A JE
VANCOUVER, CANADA

FGVC



New biodiversity monitoring approaches

* X %

B @  EGUARDEN

* 4k

Car views for the monitoring of invasive species (human vector)
Quadrat images for the monitoring of vulnerable habitats or fields biodiversity

Drones for the monitoring of forest canopies

oS

= Genus
Salvia
Borago
Rosa
Lactuca
Rubus
Bromus
Ehrharta
Erodium
Convolvulus



https://docs.google.com/file/d/1m2cOyoERcrUOSjGqNyzHmc0BSF4qJhq9/preview

New biodiversity monitoring approaches

- Car views for the monitoring of invasive species (human vector)
- Quadrat images for the monitoring of vulnerable habitats or fields biodiversity
- Drones for the monitoring of forest canopies

& GUARDEN

i AN R
Genus

Salvia
Borago
Rosa
Lactuca
Rubus
Bromus
Ehrharta
Erodium
Conve




Habitats mapping and future
trajectories prediction

PhD thesis of Cesar Leblanc

& GUARDEN

Deep SDM

Input data = tabular data Species-to-habitat

abundance classifier Habitat N14
resence/absence ; Mediterranean shifting
p o coastal dune

NG " EFLTLT




Pl@ntAgroEco

Designing new services for agroecology within the Pl@ntNet platform

Plant disease identification

- Collaborative epidemiology surveillance
- Reduction of phytosanitary products

- Jointly with @ phytia

|dentification of infra-specific taxa

- Crop varieties, horticol varieties, cultivar, hybrids, etc.
- Towards a selection more respectful of the environment




Handling uncertainty and bias of species
identification T

0.857
0.714
0.571
0.429

Advanced optimization techniques \
- Uncertainty: top-K loss function e

o R . s . s=(2,0,0)" s=1(0,2,0)T 0.000
- Imbalance: shifting of the decision frontier

eK,().()l,S,ma.x m,,=0.2

K Leg Noised imbal. ; X
1 36.3+0.3 (12.6/42.9/71.7) 42.440.3 (23.9/46.3/72.1) \\\ y

3 58.81+0.4 (32.4/75.3/92.0) 64.910.4 (44.8/74.5/92.1) !

5 68.71+0.2 (45.1/86.3/95.4) 73.2+0.5 (565.3/84.2/95.3)

Statlearn poster today:

Camille Garcin, M. Servajean, A. Joly, J. Salmon. Stochastic smoothing of the
top-K calibrated hinge loss for deep imbalanced classification. ICML 2022.
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