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Today’s plan

1. A biased intro to fairness and fairness zoology

2. Demographic Parity constraint and analogies

3. Regression with demographic parity constraint

4. Building estimators
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Fairness in ML: a major societal concern

Source https://www.mettl.com

https://www.mettl.com


4/33

Fairness in ML: a major societal concern

Source https://www.fastcompany.com

https://www.fastcompany.com


5/33

Fairness in ML: a major societal concern



6/33

EU regulation for AI
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Group fairness paradigm

Observations: (feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, label︸ ︷︷ ︸
Y

) ∼ P on X × S × Y

Predictions: f : Z → Y
I Fairness through awareness: Z = X × S (disparate treatment)

I Fairness through unawareness: Z = X (legal reasons: regulations)

Risk: f 7→ R(f)

I classification: R(f) = P(Y 6= f(Z))

I regression: R(f) = E(Y − f(Z))2

Fairness criteria: dichotomy of prediction functions: which functions we
call fair? There are a lot of definitions, maybe too many to parse.

Connections of ML fairness notions with political philosophy (Heidari et al., 2019)
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Popular definitions of fair classifiers

I Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)

P(f(Z) = 1 | S = 0) = P(f(Z) = 1 | S = 1)

1. Prediction rate is the same for two groups
2. Random variable f(Z) is independent from S
3. Only X|S matters
4. Constant predictions satisfy DP

I Equalized Odds (Hardt, Price, and Srebro, 2016)

P(f(Z) = y | Y = y, S = 0) = P(f(Z) = y | Y = y, S = 1) ∀y ∈ {0, 1}
1. Equal True Positive and True Negative rates
2. Requires more knowledge about the distribution
3. Constant predictions satisfy Equalized Odds
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Popular definitions of fair classifiers

I Equal Opportunity (Hardt, Price, and Srebro, 2016)

P(f(Z) = 1 | Y = 1, S = 0) = P(f(Z) = 1 | Y = 1, S = 1)

1. Equal True Positive rates
2. If a person Z is qualified (Y = 1) then positive prediction (f(Z) = 1) is

given with the same probability for any sensitive attribute

I Test fairness (Chouldechova, 2017)

P(Y = 1 | S = 0, f(Z) = 1) = P(Y = 1 | S = 1, f(Z) = 1)

1. Y independent from S conditionally on f(Z) = 1.
2. Closely related to group-wise calibration.
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Global view on group fairness constraints

Most of the definitions of fairness fall inside or try to reflect only 3 criteria

1. f(Z) ⊥⊥ S - independence (DP, Statistical Parity)

2. (f(Z) ⊥⊥ S) | Y - separation (Equal Odds, Equal Opportunity)

3. (Y ⊥⊥ S) | f(Z) - sufficiency (Test fairness)

N.B. Sometimes we consider a score function f(Z) ∈ [0, 1].

Taken from Chapter 2 of (Barocas, Hardt, and Narayanan, 2019)
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Impossibilities for score functions

1. f(Z) ⊥⊥ S - independence (DP, Statistical Parity)

2. (f(Z) ⊥⊥ S) | Y - separation (Equal Odds, Equal Opportunity)

3. (Y ⊥⊥ S) | f(Z) - sufficiency (Test fairness)

I If S and Y are not independent, then sufficiency and independence
cannot both hold.

I If Y ∈ {0, 1}, S and Y are not independent, f(Z) is not independent
from Y , then independence and separation cannot both hold.

I If S and Y are not independent, and P(Y = 1) ∈ (0, 1), then
separation and sufficiency cannot both hold.

A fact: famous example of COMPAS nearly satisfied sufficiency, but failed to

satisfy separation. Due to the latter propublica published an article that

extremely influenced the field of algorithmic fairness (Chouldechova, 2017).

Taken from Chapter 2 of (Barocas, Hardt, and Narayanan, 2019)
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Three (rough) types of methods: pre-processing

Pre-processing – Fair representation

Find a feature representation Z 7→ ϕ̂(Z) such that

ϕ̂(Z) ⊥⊥ S

then use any method on this representation.
Typically, (unsupervised) optimal fair representation is defined as

ϕ∗ ∈ arg min {E[d(X, ϕ(Z))] : ϕ(Z) ⊥⊥ S} .

Methods

I Linear models (Zemel et al., 2013)

I Kernel methods (Grünewälder and Khaleghi, 2021)

I GANs (Xu et al., 2018)
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Three (rough) types of methods: in-processing

Add the fairness constraint into training

f∗F ∈ arg min
f∈F

{R(f) : f(Z) ⊥⊥ S}

In-processing type method: Given data (X1, S1, Y1), . . . , (Xn, Sn, Yn) build

an estimator f̂ as a solution

min
f∈F

{
R̂(f) + λ0 · Ωcompl(f) + λ1 · ΩUNfairness(f)

}

Methods

I Regularized ERM methods (Oneto, Donini, and Pontil, 2019)

I MWU-type methods for minmax games (Agarwal et al., 2018)
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Three (rough) types of methods: post-processing

Given a base algorithm f , find a transformation

f 7→ T̂ (f) ,

so that T̂ (f) satisfies your fairness constraint

Typical algorithm construction is based on the connection between

f∗fair ∈ arg min
f :Z→Y

{R(f) : f is fair} and f∗Bayes ∈ arg min
f :Z→Y

R(f)

Often we can show that

f∗fair = T ∗(f∗Bayes) ,

treat the base algorithm f as if it were a Bayes and estimate T ∗

Methods

I Threshold adjustments (Hardt, Price, and Srebro, 2016; Menon and

Williamson, 2018; C. et al., 2019)

I Optimal transport based (C. et al., 2020; Le Gouic, Loubes, and Rigollet, 2020)
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What is the Demographic Parity constraint?

with C. Denis, S. Gaucher, M. Hebiri, L. Oneto, M. Pontil, and N. Schreuder
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Learning with Demographic Parity

(feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, signal︸ ︷︷ ︸
Y

) ∼ P on Rd × S︸︷︷︸
={1,...,K}

×Y

Prediction: f : Rd × S → Y

Risk: R(f) = E[(Y−f(X, S))2] or R(f) = P(Y 6= f(X, S))

Demographic Parity fairness

f(X, S) ⊥⊥ S

Optimal fair prediction:

f∗0 ∈ arg min {R(f) : f(X, S) ⊥⊥ S}
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Our goals

1. Understand a relation between regression and classification under the
Demographic Parity constraint

2. Understand a relation between constraint and unconstraint (Bayes
optimal) problems

3. Try to explain the notion of Demographic Parity in a simple language

4. Figure out an estimation strategy and get some bounds on risk and
unfairness
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Classical classification-regression link

(feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, signal︸ ︷︷ ︸
Y

) ∼ P on Rd × S︸︷︷︸
={1,...,K}

×{0, 1}

g∗ ∈ arg min
g:X×S→{0,1}

P(Y 6= g(X, S)) f∗ ∈ arg min
f :X×S→R

E[(Y − f(X, S))2]

A folklore result

f∗(X, S) = E[Y |X, S] g∗(X, S) = 1{f∗(X, S) ≥ 1/2}

present in every ML/Stat book

N.B. Simple to prove, but very useful in theory and in practice.
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Classification-regression link under DP

(feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, signal︸ ︷︷ ︸
Y

) ∼ P on Rd × S︸︷︷︸
={1,...,K}

×{0, 1}

Can we expect the same result under the Demographic parity constraint?

There is really no reason for such a relation...

Indeed, if

g∗0 ∈ arg min
g:X×S→{0,1}

{P(Y 6= g(X, S)) : g(X, S) ⊥⊥ S}

f∗0 ∈ arg min
f :X×S→{0,1}

{
E[(Y − f(X, S))2] : f(X, S) ⊥⊥ S

}
are such that

g∗0(X, S) = 1{f∗0 (X, S) ≥ 1/2} ,

then g∗0 is “much fairer” than we expect—f∗0 is fair at every threshold,
while g∗0 needs to be fair only at one of them.
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Classification-regression link under DP

(feature︸ ︷︷ ︸
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Lemma

g∗0(X, S) = 1

{
f∗(X, S) ≥ 1

2
+

λ∗s
2ws

}
where ws = P(S = s) and

(λ∗1, . . . , λ
∗
K) ∈ arg min

(λ1,...,λK)∈RK

{
E
∣∣∣∣2f∗(X, S)− 1− λS

wS

∣∣∣∣ :
∑
s∈S

λs = 0

}

(Menon and Williamson, 2018; Gaucher, Schreuder, and C., 2023)
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Classification-regression link under DP

(feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, signal︸ ︷︷ ︸
Y

) ∼ P on Rd × S︸︷︷︸
={1,...,K}

×{0, 1}

Nevertheless

g∗0 ∈ arg min
g:X×S→{0,1}

{P(Y 6= g(X, S)) : g(X, S) ⊥⊥ S}

f∗0 ∈ arg min
f :X×S→R

{
E[(Y − f(X, S))2] : f(X, S) ⊥⊥ S

}
Lemma

g∗(X, S) = 1{f∗0 (X, S) ≥ 1/2} f∗0 (X, S) =??

(Gaucher, Schreuder, and C., 2023)

N.B. It remains to understand the regression case
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Regression + Demographic Parity

(feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, signal︸ ︷︷ ︸
Y

) ∼ P on Rd × S︸︷︷︸
={1,...,K}

×R

Prediction: f : Rd × S → R

Risk: R(f) = E[(f∗(X, S)− f(X, S))2] where f∗(X, S) = E[Y |X, S]

Demographic Parity fairness

f(X, S) ⊥⊥ S

Optimal fair prediction:

f∗0 ∈ arg min {R(f) : f(X, S) ⊥⊥ S}
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An illustration and main assumption

f(X, S) ⊥⊥ S

Unfair prediction

s = 1
s = 2

Fair prediction

s = 1
s = 2

Assumption (A)

The group-wise prediction distributions Law(f∗(X, S) | S = s) have finite
second moment and are non-atomic for any s in S.
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Optimal transport and the Wasserstein-2 metric

Define, for µ, ν ∈ P2(R),

W2
2(µ, ν) := inf

{
E(X,Y )(X − Y )2 : X ∼ µ,Y ∼ ν

}
.

I Metric on P2(Rd)

I Optimal T ∗µ→ν ≡ F−1ν ◦ Fµ

I Nice interpretations

(X, Y ) ∼ γ

X ∼ µ

Y ∼ ν

Figure: Transport plan illustration
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Reminder: post-processing

Optimal fair: f∗0 ∈ arg min
f :Rd×S→R

{R(f) : f(X, S) ⊥⊥ S}

Bayes optimal: f∗ ∈ arg min
f :Rd×S→R

R(f)

Question: is there a link between f∗0 and f∗?

More precisely, can we show that

f∗0 ≡ T ◦ f∗ ?
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Main insight

Optimal fair: f∗0 ∈ arg min
f :Rd×S→R

{R(f) : f(X, S) ⊥⊥ S}

Bayes optimal: f∗ ∈ arg min
f :Rd×S→R

R(f)

Question: is there a link between f∗0 and f∗?

Theorem

Set ws = P(S=s). Let Assumption (A) be satisfied, then

Law(f∗0 (X, S)) = arg min
ν∈P2(R)

∑
s∈S

wsW
2
2

(
Law(f∗(X, S) | S = s), ν

)
︸ ︷︷ ︸

Wasserstein barycenter problem

,

f∗0 (x, 1) = w1f
∗(x, 1) + w2T

∗
1→2 ◦ f∗(x, 1), ∀x ∈ Rd ,

T ∗1→2 – optimal transport map from Law(f∗ | S = 1) to Law(f∗ | S = 2).

(C. et al., 2020)
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Interpretation for S = {1, 2}

Fair optimal: f∗0 (x, 1) = w1f
∗(x, 1) + w2F

−1
f∗|S=2 ◦ Ff∗|S=1 ◦ f∗(x, 1)

f∗(x, 1) f∗(x̄, 2)

Fair optimal prediction f ∗0 with w1 = 2/5 and w2 = 3/5

Law of f∗|S=1

Law of f∗|S=2

f∗(x, 1) f∗0 (x, 1)=f∗0 (x̄, 2) f∗(x̄, 2)

Law of f∗|S=1

Law of f∗|S=2

Law of f∗0
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Generic post-processing estimator (S = {1, 2})

Fair optimal: f∗0 (x, 1) = w1f
∗(x, 1) + w2T

∗
1→2 ◦ f∗(x, 1)

I Base estimator: f̂ : Rd × {1, 2} → R trained independently from the
following data.

I Unlabeled data: ∀s ∈ S we observe Xs
1, . . . ,X

s
Ns

i.i.d.∼ PX|S=s

Meta algo: 1. estimate ws if needed

2. estimate transport maps T ∗1→2 and T ∗2→1

using unlabeled data and base estimator

Put together: 3. f̂0(x, 1) = w1f̂(x, 1) + w2T̂1→2 ◦ f̂(x, 1)
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Theoretical guarantees

Theorem

For any joint distribution P of (X, S, Y ), any base estimator f̂ it holds that

f̂0(X, S) ⊥⊥ S

Under additional assumptions on P we have

E‖f̂0 − f∗0 ‖1 . E‖f̂ − f∗‖1︸ ︷︷ ︸
quality of base estimator

∨ ∑
s∈S

wsN
−1/2
s︸ ︷︷ ︸

transport estimation

(C. and Schreuder, 2022)

Additional assumptions: (f∗(X, S) | S = s) admits density which is upper
and lower bounded

Ns – number of unlabeled samples from PX|S=s and PX|S=2
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How did we get exact independence and a cute
lemma from conformal prediction theory

Lemma for “smoothed ranks”

Let V = (V, V1, . . . , Vn) be i.i.d. real valued random variables and let U be
distributed uniformly on (0, 1) and independent of V . Let

F (U, V1, . . . , Vn, x) =
1

n+ 1

(
n∑
i=1

1{Vi < x}+ U ·
(

1 +

n∑
i=1

1{Vi = x}
))

.

Then, F (U, V1, . . . , Vn, V ) is distributed uniformly on (0, 1).

V. Vovk and A. Gammerman

N.B. No assumptions on the distribution of the data, to compare with rank
statistics.
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How did we get exact independence and a cute
lemma from conformal prediction theory

Lemma for “smoothed ranks”

Let V = (V, V1, . . . , Vn) be i.i.d. real valued random variables and let U be
distributed uniformly on (0, 1) and independent of V .

F (U, V1, . . . , Vn, V ) ∼ Unif(0, 1)

The optimal fair prediction can be expressed as

f∗0 (x, s) = Q ◦ (Fs(f
∗(x, s))) ,

where Q is a monotone and Fs is the CDF of Law(f∗(X, S) | S = s).

Idea. Use the above lemma for estimation of Fs(f
∗(x, s)) as it always

produces uniform distributions on (0, 1) (conditionally on S = s)
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Conclusions

1. Group fairness – enforce some independence criterion

f(Z) ⊥⊥ S, (f(Z) ⊥⊥ S) | Y, (Y ⊥⊥ S) | f(Z)

2. Demographic parity preserves classical classification-regression

g∗0 = 1{f∗0 ≥ 1/2}

3. Regression with demographic parity (f(Z) ⊥⊥ S) can be characterized
by Wasserstein barycenter problem

4. Demographic parity simply matches ranks of individuals from different
groups
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Thank you for your attention! Questions?
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