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Schools are using software to help
pick who gets in. What could go
wrong?

Admissions officers are increasingly turning to automation and Al with the hope of
streamlining the application process and leveling the playing field.
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The accuracy, fairness, and limits
of predicting recidivism

Julia Dressel and Hany Farid*

Algorithms for predicting recidivism are commonly used to assess a cri
crime. These predictions are used in pretrial, parole, and sentencing decisions. Proponents of these systems argue that
big data and advanced machine learning make these analyses more accurate and less biased than humans. We show,
however, that the widely used commerci: k assessment software|COMPAS is no more accurate or fair than predic-

tions made by people with little or no criminal justice expertise.|In addition, despite COMPAS's collection of 137
features, the same accuracy can be achieved with a simple linear predictor with only two features.

Copyright © 2018

The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original US. Government
Works. Distributed
under a Creative
Commons Attribution
NonCommercial
License 4.0 (CC BY-NQ).



EU regulation for Al

2 EUROPEAN COMMISSION
Brussels, 21.4.2021

COM(2021) 206 final
2021/0106(COD)

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL
INTELLIGENCE ACT) AND AMENDING CERTAIN UNION LEGISLATIVE ACTS



Group fairness paradigm

Observations: (feature, sensitive attribute,label) ~Pon X x § x Y
X s Y

Predictions: f:Z — Y

» Fairness through awareness: Z = X x S (disparate treatment)

» Fairness through unawareness: Z = X (legal reasons: regulations)
Risk: f— R(f)

» classification: R(f) =P # f(2))

> regression: R(f) = E(Y — f(Z))?

Fairness criteria: dichotomy of prediction functions: which functions we
call fair? There are a lot of definitions, maybe too many to parse.

Connections of ML fairness notions with political philosophy



Popular definitions of fair classifiers

» Demographic Parity (DP)
P(f(Z)=1]5=0)=P(f(Z2)=1[5=1)

Prediction rate is the same for two groups

Random variable f(Z) is independent from S

Only X|S matters
Constant predictions satisfy DP

Ll



Popular definitions of fair classifiers

> Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)
P(f(Z2)=1|5=0)=P(f(Z2)=1]5=1)

Prediction rate is the same for two groups

Random variable f(Z) is independent from S

Only X |S matters
Constant predictions satisfy DP

Ll

> Equalized Odds (Hardt, Price, and Srebro, 2016)
P(f(Z2)=y|Y =y.5=0)=P(f(Z2)=y|Y =y.5=1) Vye{0,1}
1. Equal True Positive and True Negative rates

2. Requires more knowledge about the distribution
3. Constant predictions satisfy Equalized Odds



Popular definitions of fair classifiers

» Equal Opportunity
P(f(Z)=1|Y=1,5=0)=P(f(Z2)=1|Y =1,5=1)
1. Equal True Positive rates

2. If a person Z is qualified (Y = 1) then positive prediction (f(Z) =1) is
given with the same probability for any sensitive attribute



Popular definitions of fair classifiers

» Equal Opportunity
P(f(Z)=1|Y=1,5=0)=P(f(Z2)=1|Y =1,5=1)
1. Equal True Positive rates

2. If a person Z is qualified (Y = 1) then positive prediction (f(Z) =1) is
given with the same probability for any sensitive attribute

» Test fairness
PY=1|5=0,/(Z)=1)=PY =1|5=1,f(Z)=1)

1. Y independent from S conditionally on f(Z) = 1.
2. Closely related to group-wise calibration.



Global view on group fairness constraints

Most of the definitions of fairness fall inside or try to reflect only 3 criteria
1. f(Z) L S - independence (DP, Statistical Parity)

2. (f(Z) L S)|Y - separation (Equal Odds, Equal Opportunity)
3. (Y LS)| f(Z) - sufficiency (Test fairness)

N.B. Sometimes we consider a score function f(Z) € [0, 1].

Taken from Chapter 2 of



Impossibilities for score functions

. f(Z) L S - independence (DP, Statistical Parity)
. (f(Z) L S)|Y - separation (Equal Odds, Equal Opportunity)

. (Y L S)| f(Z) - sufficiency (Test fairness)

If S and Y are not independent, then sufficiency and independence
cannot both hold.

IfY € {0,1}, S and Y are not independent, f(Z) is not independent
from Y, then independence and separation cannot both hold.

If S and Y are not independent, and P(Y = 1) € (0,1), then
separation and sufficiency cannot both hold.

Taken from Chapter 2 of
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Impossibilities for score functions

1. f(Z) L S - independence (DP, Statistical Parity)
2. (f(Z) L S)|Y - separation (Equal Odds, Equal Opportunity)

3. (Y LS)|f(Z) - sufficiency (Test fairness)
» If S and Y are not independent, then sufficiency and independence
cannot both hold.

> If Y € {0,1}, S and Y are not independent, f(Z) is not independent
from Y, then independence and separation cannot both hold.

» If S and Y are not independent, and P(Y = 1) € (0, 1), then
separation and sufficiency cannot both hold.

A fact: famous example of COMPAS nearly satisfied sufficiency, but failed to
satisfy separation. Due to the latter propublica published an article that
extremely influenced the field of algorithmic fairness

Taken from Chapter 2 of
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Three (rough) types of methods: pre-processing

Pre-processing — Fair representation
Find a feature representation Z +— ¢(Z) such that
¢(Z) LS

then use any method on this representation.
Typically, (unsupervised) optimal fair representation is defined as

" € argmin {E[d(X,p(Z))] : p(Z) L S} .



Three (rough) types of methods: pre-processing

Pre-processing — Fair representation

Find a feature representation Z — ¢(Z) such that
¢(Z) LS

then use any method on this representation.
Typically, (unsupervised) optimal fair representation is defined as

" € argmin {E[d(X,p(Z))] : p(Z) L S} .
Methods

» Linear models (Zemel et al., 2013)
» Kernel methods (Criinewilder and Khaleghi, 2021)

» GANSs (Xu et al., 2018)



Three (rough) types of methods: in-processing

Add the fairness constraint into training

fr€argmin{R(f) : f(Z) L S}
feFr

In-processing type method: Given data (X1,S51,Y1),...,(Xn, Sn,Yy) build
an estimator f as a solution

gcl’élg {ﬁ(f) + )\0 . Qcompl(f) + )\1 : QUNfairness(f)}



Three (rough) types of methods: in-processing

Add the fairness constraint into training

fr€argmin{R(f) : f(Z) L S}
feFr

In-processing type method: Given data (X1,S51,Y1),...,(Xn, Sn,Yy) build
an estimator f as a solution

?gﬁ {ﬁ(f) + )\O : Qcompl(f) + )\1 : QUNfairness(f)}
Methods

» Regularized ERM methods (Oneto, Donini, and Pontil, 2019)

» MWU-type methods for minmax games (Agarwal et al., 2018)



Three (rough) types of methods: post-processing

Given a base algorithm f, find a transformation

f=T(f)

so that T'(f) satisfies your fairness constraint



Three (rough) types of methods: post-processing

Given a base algorithm f, find a transformation

f=T(f)

so that T'(f) satisfies your fairness constraint
Typical algorithm construction is based on the connection between

fiair € argmin {R(f) : fis fair} and fj,. € argminR(f)
FZoY FiZoY

Often we can show that

fftlil‘ = T*(flzayes) ’

treat the base algorithm f as if it were a Bayes and estimate T™*



Three (rough) types of methods: post-processing

Given a base algorithm f, find a transformation

f=T(f)

so that T'(f) satisfies your fairness constraint
Typical algorithm construction is based on the connection between

fiair € argmin {R(f) : fis fair} and fj,. € argminR(f)
FZoY FZoY

Often we can show that
fftcLir = T*(flgayes) ’
treat the base algorithm f as if it were a Bayes and estimate T™*

Methods

» Threshold adjustments (Hardt, Price, and Srebro, 2016; Menon and
Williamson, 2018; C. et al., 2019)

» Optimal transport based (C. et al., 2020; Le Gouic, Loubes, and Rigollet, 2020)



What is the Demographic Parity constraint?

with C. Denis, S. Gaucher, M. Hebiri, L.. Oneto, M. Pontil, and N. Schreuder



Learning with Demographic Parity

(feature, sensitive attribute, signal) ~Pon RY x S = xY
—— —— ~~
X S Y ={1,...K}
Prediction: f: R4 xS — Y
Risk: R(f) = E[(Y— (X, $))?] or R(f) = P(Y # f(X,5))
Demographic Parity fairness

F(X,8) LS

Optimal fair prediction:

fi € argmin {R(f) : f(X,S) L S}



Our goals

. Understand a relation between regression and classification under the
Demographic Parity constraint

. Understand a relation between constraint and unconstraint (Bayes
optimal) problems

. Try to explain the notion of Demographic Parity in a simple language

. Figure out an estimation strategy and get some bounds on risk and
unfairness



Classical classification-regression link

(feature, sensitive attribute, signal) ~Pon R x S x{0,1}
—— < , ~—~—
X S Y ={1,....K}

g€ argmin P(Y #g(X,S))  f*€ argmin E[(Y — f(X,9))%
g:XxS—{0,1} [:XXS—R



Classical classification-regression link

(feature, sensitive attribute, signal) ~Pon R x S x{0,1}
—— < , ~—~—
X S Y ={1,...,K}

g€ argmin P(Y #g(X,S))  f*€ argmin E[(Y — f(X,9))%
g:XxS—{0,1} [:XXS—R

A folklore result

f1(X,5) =E[Y | X, 5] g (X, 8) =1{f"(X.,9) > 1/2}

present in every ML /Stat book

N.B. Simple to prove, but very useful in theory and in practice.



Classification-regression link under DP

(feature, sensitive attribute, signal) ~Pon R x S x{0,1}
—_—— < , ~—
X S Y ={1,....K}

Can we expect the same result under the Demographic parity constraint?

There is really no reason for such a relation...



Classification-regression link under DP

(feature, sensitive attribute, signal) ~Pon R x S x{0,1}
—_—— < , ~—
X S Y ={1,....K}

Can we expect the same result under the Demographic parity constraint?

There is really no reason for such a relation... Indeed, if

9o € argmin {P(Y #g(X,S5)) : g(X,5) L S}
g:XxS8—{0,1}

fo e argmin {E[Y - f(X,5))? : f(X,S) LS}
f:XxS8—{0,1}

are such that
90(X,8) =1{fj(X,5) > 1/2} ,

then g§ is “much fairer” than we expect— f{ is fair at every threshold,
while gg needs to be fair only at one of them.



Classification-regression link under DP

(feature, sensitive attribute, signal) ~Pon R? x S x{0,1}
N—— —— ~~
X S Y ={1,....K}

9o € argmin {P(Y # ¢g(X,5)) : g(X,5) L S}
g:XxS8—{0,1}

f* € argmin E[(Y — f(X,5))?]
f:AXS—R

Lemma

+ As
2wy

A
(\i,....\;) € argmin E‘2f*(X,S)1S
(A],.“,/\K)ERK wS

DN | =

G(X.5) = 1{f*<X,S> >

where wy = P(S = s) and

: Z/\SO}

seS




Classification-regression link under DP

(feature, sensitive attribute, signal) ~Pon RY x S x{0,1}
—— N , ~—~—
X S Y ={1,....K}

Nevertheless

go € argmin {P(Y # g(X,5)) : g(X,5) L S}

g:XxS8—{0,1}
fo € argmin {E[(Y—f(X,S))Q] . H(X,S) JLS}
[ XXS—R
Lemma
g°(X.8) = 1{/;(X.5) > 1/2) X5 =

N.B. It remains to understand the regression case



Regression + Demographic Parity

(feature, sensitive attribute, signal) ~Pon RYx S xR
X S Y :{17"'7K}
Prediction: f: R4 xS — R
Risk: R(f) = E[(f*(X,S) — f(X,5))?] where f*(X,S) =E[Y | X, 5]
Demographic Parity fairness

F(X,8) LS

Optimal fair prediction:

fi € argmin {R(f) : f(X,S) L S}



An illustration and main assumption

F(X,8) LS

Unfair prediction Fair prediction

o |

Assumption (A)

The group-wise prediction distributions Law(f*(X,.S) | S = s) have finite
second moment and are non-atomic for any s in S.




Optimal transport and the Wasserstein-2 metric

Define, for i, € Pa(R),

W3 (p, ) =inf {E(xy)(X = Y)*: X ~p, Y ~v}.

> Metric on Pa(R%)

» Optimal T°

n—v

=F,'0F,

» Nice interpretations

Figure: Transport plan illustration

24/33



Reminder: post-processing

Optimal fair: fo € argmin {R(f) : f(X,S) LS}
fRIXS—R

Bayes optimal: fTe argmin R(f)
fRIXS—R

Question: is there a link between f; and f*?

More precisely, can we show that

fr=Tof?



Main insight

Optimal fair: f5 e argmin {R(f) : f(X,S) L S}
fRIXS—R
Bayes optimal: f*e argmin R(f)
fRIXS—R
Question: is there a link between f; and f*?
Theorem

Set ws; = P(S=s). Let Assumption (A) be satisfied, then

Law(f{(X,S)) = argminZwswg (Law(f*(X7S) | S =s), V) ,
veP2(R) seS

Wasserstein barycenter problem

[, 1) =w f*(x,1) + woTy 5 0 f*(x, 1), vV € RY ,

T; o — optimal transport map from Law(f* | S = 1) to Law(f* | S = 2).




Interpretation for S = {1,2}

Fair optimal: fj(x,1) = w f"(x,1) + w2Ff:1\s:2 o Fyejg=1 0 f*(x,1)

Fair optimal prediction f; with w; = 2/5 and wy = 3/5

2 ) === Law of f*|S=1
—= Law of f*|S=2




Interpretation for S = {1,2}

Fair optimal: fj(x,1) = w f"(x,1) + wQFf:l\S:Q o Fyejg=1 0 f*(x,1)

Fair optimal prediction f; with w; = 2/5 and wy = 3/5

s \‘ === Law of f*|S=1
/£ N\ —= Law of f*|S=2
/£ \
/ \ S—_——
/ \ 7 ~,
/ \ R N
4 \\ R N
F \ e N
P \ 7 S
P2 S 7 ~
-7 St S~
fr(@,1) ' 1(x,2)
-~
A0, ——- Law of f*|S=1
/
II N\ —-= Law of f*|5=2
,' \\ P —— Law of f
F \ ./ ~
/ \ ) \.
/ AN ¥ N,
,/ \ - N,
V2 e ~.
< N o ~.
_r’ S—Y S~
* - LTy L
@) fo (@ D)=f;(z,2) f(,2)



Generic post-processing estimator (S = {1,2})

Fair optimal: fj(x,1) = wy f* (2, 1) + w1} 50 f*(x, 1)

» Base estimator: f :R% x {1,2} — R trained independently from the
following data.
ii.d.

» Unlabeled data: Vs € S we observe X7,..., X% "~ Px|g—s

Meta algo: 1. estimate w; if needed
2. estimate transport maps 17, and 75,

using unlabeled data and base estimator



Generic post-processing estimator (S = {1,2})

Fair optimal: fj(x,1) = wy f* (2, 1) + w1} 50 f*(x, 1)

» Base estimator: f :R% x {1,2} — R trained independently from the
following data.

» Unlabeled data: Vs € S we observe X7,..., X} v

~ Pxs=s
Meta algo: 1. estimate w; if needed
2. estimate transport maps 17, and 75,
using unlabeled data and base estimator
Put together: 3. fo(x,1) = wyf(x,1) +wsTy 50 f(x,1)



Theoretical guarantees

Theorem
For any joint distribution P of (X, S,Y), any base estimator f it holds that

fo(X,S) LS
Under additional assumptions on P we have

Elfo-filis  EIf=f1h \/ D wnN”
N———
quality of base estimator s€S

transport estimation

(C. and Schreuder, 2022)

Additional assumptions: (f*(X,S) | S = s) admits density which is upper
and lower bounded

Ns — number of unlabeled samples from Px|g—, and Px|g—2



How did we get exact independence and a cute
lemma from conformal prediction theory

Lemma for “smoothed ranks”

Let V = (V,V4,...,V,) be i.i.d. real valued random variables and let U be
distributed uniformly on (0,1) and independent of V. Let

i=1

F(UW, ..., Vy,a) = n+1 (Zn{v <z}+U- <1+§n:11{v;:x}>>

Then, F(U,V1,...,V,,V) is distributed uniformly on (0, 1).

V. Vovk and A. Gammerman

N.B. No assumptions on the distribution of the data, to compare with rank
statistics.



How did we get exact independence and a cute
lemma from conformal prediction theory

Lemma for “smoothed ranks”

Let V = (V,V4,...,V,) be i.i.d. real valued random variables and let U be
distributed uniformly on (0, 1) and independent of V.

F(U7 V17 sy an V) ~ Unlf(o, 1)

The optimal fair prediction can be expressed as
fo(®,5) = Qo (Fs(f*(w,5)))
where () is a monotone and Fy is the CDF of Law(f*(X,5) | S = s).

Idea. Use the above lemma for estimation of F(f*(x,s)) as it always
produces uniform distributions on (0, 1) (conditionally on S = s)



Conclusions

. Group fairness — enforce some independence criterion

f(Zz)yLs, — (f(Z) LS|y, (Y LS)[f(2)

. Demographic parity preserves classical classification-regression

90 = Hfg = 1/2}

. Regression with demographic parity (f(Z) 1L S) can be characterized
by Wasserstein barycenter problem

. Demographic parity simply matches ranks of individuals from different
groups



Thank you for your attention! Questions?

PROHIBITED ARTIFICIAL INTELLIGENCE PRACTICES

Article 5
The following artificial intelligence practices shall be prohibited:

(a) the placing on the market, putting into service or use of an Al system that deploys subliminal techniques
beyond a person’s consciousness in order to materially distort a person’s behaviour in a manner that
causes or is likely to cause that person or another person physical or psychological harm;

(b) the placing on the market, putting into service or use of an |Al system that exploits any of the
vulnerabilities of a specific group of persons due to their age, physical or mental disability, in order to
materially distort the behaviour of a person pertaining to that group in a manner that causes or is likely
to cause that person or another person physical or psychological harmj

(c) the placing on the market, putting into service or use of Al systems by public authorities or on their
behalf for the evaluation or classification of the trustworthiness of natural persons over a certain period
of time based on their social behaviour or known or predicted personal or personality characteristics,
with the social score leading to either or both of the following:

(1) |detrimental or unfavourable treatment of certain natural persons or whole groups thereof fin social
contexts which are junrelated to the contexts in which the data was originally generated|or
collected;

(i) detrimental or unfavourable treatment of certain natural persons or whole groups thereof that is
unjustified or disproportionate|to their social behaviour or its gravity;
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