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Engagement sessions: Inspiration Exchange

Online engagement sessions for ML
researchers in healthcare; themed
presentations & Q&A

individualized treatment effect inference (2/2)

ge - individualized treatment effect inference (1/2)
Inspiration Exchange

https://www.vanderschaar-lab.com/

for
(particularly masters, Ph.D, and post-docs).

‘We would ke to:
- s makhin beaening mocels and exhikies

- Engagement sessions
- Inspiration Exchange e

= spark rew peojects wnd colaborations

iration Exchange - recent projects in machine learning for healthcare
i Lab
iration Exchange - software packages for automated machine learning

Subscribe & join us!

iration Exchange - automated machine learning pipelines
Lot

Inspiration Exch:
van g Scnasi Lab
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Discovery

Most of the ML community: Drug discovery

Our focus: Improving clinical trials with ML
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Problem addressed:
Clinical trials - difficult, expensive and ripe for disruption

Opportunity

Typical size of Phase I1/111 RCT: 100-1000s of patients Fundamentally, the way we run clinical trials has not
* of which up to half are controls changed in decades despite major tech advances
* and of which ~20% will drop out?!

What if we could innovate, for example, to:

Typical all-in cost per patient: >540,0002 * Reduce required patient numbers by 20% through
] ) replacing controls and preventing drop-outs
Typical cost per trial: 54-40M+ « Reduce cost-per-patient by 20% through improved

° i - 2 . . . .
Most are in the 512-33M range recruitment, monitoring and operations

* Improve PoS through better recruitment, prediction,

Typical time per trial: 1-2 years
yp P y trial design and analytics?

* of which as much as 30% is recruitment
* to which recruitment drives delays in >80% of trials? Cost saving per trial: ~$4-12M (for most)

Average PoS per Phase II/lll trial: 50-60%* Yielding an annual market opportunity: $7-22Bn+
» of which the innovator(s) could capture an

Total Phase II/1ll trials commenced per year: ~>1,800° . .
appreciable fraction

* Of which around half are in oncology
Plus months’ time saving per trial and upside on PoS

1. Tufts CSDD report 2020; higher dropout rate in CNS and oncology
2. Moore et al., JAMA Int Med, 2018 3. Huang et al., Cont Clin Trials, 2018 4. Takebe et al., Clin Transl Sci, 2018 5. Estimated based on Bloomberg data on identifiable trials sponsored by 15 large pharma companies in 2020



Challenges are felt throughout the clinical development
journey

Stage 2 Stage 3 Stage 4

e

Many are perceived as poorly addressed today



ML and related techniques can address many of them

Stage 2 Stage 3 Stage 4
Causal ML Treatment Effect Estimation

Reinforcement Learning

Determining endpoints /Multi-Armed Bandits Predicting personalized response Refining guidelines
(timing, dosage, etc.)
q Determining dosage Subpopulation analysis Indication expansion
Transfer Learning _
Incorporating observational data Discovering drug combinations - . .
_ 8 e Time Series Analysis
Incorporating pre-clinical data Identifying “good” subpopulations Effect and impact on comorbidity
Incorporating cross-trial results Recruiting “right” patients Competing risk analysis Modeling disease progression

Optimal Design Inverse Reinforcement Learning Few-Shot Learning
Optimal design of trials Retaining recruited patients Combining models (e.g. PKPD) Rapid deployment
Synthetic Data

. .. . Streamlining data sharing .. . TP .
- - Facilitating RWD access and analysis
Augmenting pre-clinical/cross-trial data itV e b O s ] Anonymizing results for reporting g \%



Some of our ML work to date

Stage 2 Stage 3 Stage 4
Causal ML Treatment Effect Estimation

Reinforcement Learning

Determining endpoints /Multi-Armed Bandits Predicting personalized response Refining guidelines
(timing, dosage, etc.)

. Determining dosage * Subpopulation analysis Indication expansion

Transfer Learning g dosag
Incorporating observational data Discovering drug combinations
Incorporating pre-clinical data

Time Series Analysis

Effect and impact on comorbidity

Time-to-event analysis

Identifying “good” subpopulatior*
Incorporating cross-trial results Recruiting “right” patients

Competing risk analysis Modeling disease progression

Optimal Design Inverse Reinforcement Learning Few-Shot Learning
Optimal design of trials Retaining recruited patients Combining models (e.g. PKPD) Rapid deployment

Synthetic Data

. . - Streamlining data sharing .. . TP .
- s . Facilitating RWD access and analysis
Augmenting pre-clinical/cross-trial data el o anisamie] Anonymizing results for reporting g y



Revolutionizing clinical trials using machine learning

Comprehensive ‘Big |dea’ piece on REVOIUtioniZing Clinical Tl’ia|S USiI’Ig MaChine

clinical trials and the potential impact of | Learning
ML/AL 5680, 5 e B i

Explores key challenges of clinical trials

a nd ex p | a I n l ng the Opportu n Itl es M L Clinical trials today: Expensive, difficult, and ripe for disruption
b ri n g s to th e ta b l e. Since their initial use in the 1940s, randomized controlled trials (RCTs) have become the gold-standard supporting the

practice of evidence-based medicine [1). However, increasing complexity of regulations and protocols mean they are both
expensive and difficult to run: they cost upwards of $33M and take years to produce results [2,3]. Restrictive inclusion
criteria also mean that half of clinical trials exclude more than 75% of patients they aim to treat [4]. Yet RCTs remain the
foundation of modern medicine and more than 1,800 trials are commenced every year.

Although novel approaches to clinical trial design have emerged [5]—like decentralized trials, e-consent, and various flavors
of adaptive designs—conventional RCTs have remained the dominant approach despite their acknowledged flaws, This

va n d e rs C h a a r- l a b ° C 0 m / situation presents a huge opportunity for innovation. Given the scale at which clinical trials are operated, even small

improvements to how clinical trials are run could have tremendous impact on healthcare.

—~ Big ideas

° ° ° . . Typical size of Phase II/1ll RCT: 100-1000s of pati Fund; lly, the way we run clinical trials has not
9 R evo l u t' o n ' Zl n C l l n ' C a l « of which up to half are controls changed in decades despite major tech advances
* and of which ~20% will drop out!

What if we could innovate, for example, to:

Tri a I S u S i n g M a C h i n e Le a rn i n g I : xzzi:er:::i;:td:i:if; numbers by 20% through

Tvpltaf cost per tﬂﬂ' $4-40M+ replacing controls and preventing drop-outs
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Revolutionizing Healthcare — Next-generation clinical trials

Clin iCian-focused Bias in effect size when d.eviat\'n.g from doub'IEfblind
o o o randomized trials IL
Revolutionizing Healthcare T, s L

roundtables (May & July 2022) e

youtube.com/vanderSchaarLab/
- Revolutionizing Healthcare [ o
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Precision Dosing using ML

Just Right

¢ | 49|

NV NENAVAVAYAY A
GOLDILOCKS PRINCIPLE
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From Real-World Patient Data to Individualized
Treatment Effects Using Machine Learning:
Current and Future Methods to Address
Underlying Challenges

. ) ) X a——
Ioana Bica**, Ahmed M. Alaa’, Craig Lambert* and Mihaela van der Schaar—”

Clinical decision making needs to be supported by evidence that treatments are beneficial to individual patients.
Although randomized control trials (RCTs) are the gold standard for testing and introducing new drugs, due to the
focus on specific questions with respect to establishing efficacy and safety vs. standard treatment, they do not
provide a full characterization of the heterogeneity in the final intended treatment population. Conversely, real-world
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Discovery

Focus today: Discovery of governing equations using ML -
the science of medicine

- Impact physiology (e.g. tumor growth)
- Impact pharmacology (e.g. precision dosing)
- Etc.
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We need to go beyond causal structure

Causal models - structure + structural equations
Most research today: focus on structure

Ladder of causation [1]

demmmessty Pearl’s ladder of causation

| association
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The “Discovery” Ladder

Governing
equations

Causal structure

Association

Dynamical systems - *

Discovery of governing eq.

Causal graphs -
DAG Causal discovery
Prediction & Discover Features
Interpretability & Exgmple§ &
Relationships
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Discover closed-form governing equations from data

Closed-form equation are: : :

. C . Machine Learning
onscise Algorithms

 Transparent

()

* Interpretable to human experts
 Amenable to further analysis (e.g.,

identifying stable equilibira)
More insight

discover
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Discovery of governing equations using ML

Explicit function | Implicit function | Ordinary Partial
differential differential
equation equation

Typical form y = f(x) flx,y) =c % = f(x,t) a_u = f(u,x)

dt ot
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Discovery of risk equations using ML

Explicit function

Typical form y = f(x)

NHS Predict Breast Cancer equations

o if ER+
. . H,(t) = exp[0.7424402 — 7.527762/+/t — 1.812513 * log(t) /1]
Risk equations
H_(t) = exp[—1.156036 + 0.4707332/t2 — 3.51355/1].
rt‘-‘;{% van_der_Schaar 58 UNIVERSITY OF
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Turning black boxes into white boxes using symbolic
metamodels [Alaa & vdS, NeurlPS 2019] [Crabbe, Zhang, vdS, NeurlPS 2020]

Black-box ML model Explicit function
. ali :
BB e O Symbolic
s 8 o o o Metamodeling » a1 X1 + 2 X5 + a3 Xy X
(¢ c Ct —~3
Ul s N (S _ . )% s X3 + a5 log(X
Ny AN 9(x) = G(x;6%) 1X5 + as log(Xy)
(¢ (1 s e

f* = arg mingee £(f(x), G(x;0)) 9(x)

—
&,

Metamodels

Operates on a trained machine learning model and outputs a
symbolic formula describing the model’s prediction surface
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Discovery of governing equations using ML

Explicit function | Implicit function Ordinary
differential
equation

Typical form y = f(x) flx,y)=c % = f(x,t)

A much harder problem I

x(@) ——2P8
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Discover closed-form ordinary differential equations
(ODEs) from observed trajectories - D-CODE

D-CODE: Discovering Closed-form ODEs from T
Observed Trajectories gorithms

Z. Qian, K. Kacprzyk, M. van der Schaar,
ICLR 2022

()

Structural '

knowledge

discover
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Unique challenges in discovering ODEs

1. The time derivative is not observed
 Only observe the states over time
« Conventional symbolic regression methods are not applicable

2. ltis difficult to estimate the time derivative
« States are observed sporadically with noise
« Naive two-step symbolic regression is likely to fail

3. Difficulty in directly solving the initial value problem of ODE
« The true initial condition is unknown & difficult to infer
« Sensitive to initial condition
« Computationally challenging
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Problem formulation

Dataset

! y1(t) )

yp(t)
t € {t,t,, ..., T}
yi(t) € R/

&Py van_der_Schaar
S \LaB

Goal:
Discover

vanderschaar-lab.com

System of | ODEs

(

.

f1(x) = X1

filx) =x

x:[0,T] - R

\

J

x(t) = [xq, .., x)]"

fiiR/ >R
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D-CODE: Discovering Closed-Form ODEs
[Qian, Kacprzyk, vdS, ICLR 2022]

Variational formulation of ordinary differential equations
£;(t) = fi(z(®), Vi=1,...,J, Vt € [0,T]

Characterize an ODE without referring to the derivative!

et_‘,:h. van_der_Schaar
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D-CODE: motivation

Variational formulation of ordinary differential equations

i5(t) = f(@(8)), Vi =1,...,J, ¥t € [0,T) (1)

Definition 1. Consider J € NT, T' € R*, continuous functions x : [0,7] — R”, f : R/ — R, and
g € C1[0,T], where C! is the set of continuously differentiable functions. We define the functionals

i i
O, f.2.9) = / £ (@(®))g(t)dt + / (Og(dt: Vi€ {1,2,...,J}

function f
trajectory %
testing function g
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D-CODE: motivation

Variational formulation of ordinary differential equations

i5(t) = f(@(8)), Vi =1,...,J, ¥t € [0,T) (1)

Definition 1. Consider J € NT, T' € R*, continuous functions x : [0,7] — R”, f : R/ — R, and
g € C1[0,T], where C! is the set of continuously differentiable functions. We define the functionals

i i
C;(f,z,9) ::/0 f(:c(t))g(t)dt—F/() z;(t)g(t)dt] Vje{l1,2,...,J}
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D-CODE: motivation

Variational formulation of ordinary differential equations

i5(t) = f(@(8)), Vi =1,...,J, ¥t € [0,T) (1)

Definition 1. Consider J € NT, T' € R*, continuous functions x : [0,7] — R”, f : R/ — R, and
g € C1[0,T], where C! is the set of continuously differentiable functions. We define the functionals

T i3
Ci(f,m.9) ::/0 f(:c(t))g(t)dtJr/O zj(thalt)dt; Yy e{l,2,...,J}
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D-CODE: motivation

Variational formulation of ordinary differential equations

i5(t) = f(@(8)), Vi =1,...,J, ¥t € [0,T) (1)

Definition 1. Consider J € NT, T' € R*, continuous functions x : [0,7] — R”, f : R/ — R, and
g € C1[0,T], where C! is the set of continuously differentiable functions. We define the functionals

i i
C;(f,z,9) ::/0 f(:c(t))g(t)dt+/0 z;(t)g(t)dt; Vje{l1,2,...,J}
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Hackbusch, W. (2017)
Variational Formulation

D-CODE: motivation

Variational formulation of ordinary differential equations

i5(t) = @) Vi=1,...,J, ¥t € [0,T) (1)

Definition 1. Consider J € NT, T € R, continuous functions x : 0,T] — R7, f : R/ - R, and
g € C1[0,T], where C! is the set of continuously differentiable functions. We define the functionals

i i
C;(f,z,9) ::/0 f(:c(t))g(t)dt+/0 z;(t)g(t)dt; Vje{l1,2,...,J}

Proposition 1. (ackbusch, 2017) Consider J € N, T € R*, a continuously differentiable function
x : [0,T] — R’, and continuous functions Js RY = Rforj=1,...,J. Then x is the solution to
the system of ODEs in Equation | if and only if

Ci(fj,®,9) =0,Vj € {1,...,J}, Vg € C'[0,T], g(0) = g(T) = 0

&Py van_der_Schaar B UNIVERSITY OF
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Hackbusch, W. (2017)
Variational Formulation

D-CODE: motivation

Variational formulation of ordinary differential equations

i5(t) = @) Vi=1,...,J, ¥t € [0,T) (1)

Definition 1. Consider J € NT, T € R, continuous functions x : 0,T] — R7, f : R/ - R, and
g € C1[0,T], where C! is the set of continuously differentiable functions. We define the functionals

i i
C;(f,z,9) ::/0 f(:c(t))g(t)dt+/0 z;(t)g(t)dt; Vje{l1,2,...,J}

Proposition 1. (ackbusch, 2017) Consider J € N, T € R*, a continuously differentiable function
x : [0,T] — R’, and continuous functions Js RY = Rforj=1,...,J. Then x is the solution to
the system of ODEs in Equation | if and only if

Ci(fj,®,9) =0,Vj € {1,...,J},| Vg € C'[0,T], g(0) = g(T) = 0
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Hackbusch, W. (2017)
Variational Formulation

D-CODE: motivation
Variational formulation of ordinary differential equations

Proposition 1. (Hackbusch, 2017) Consider J € Nt, T' € R™, a continuously differentiable function
x : [0,T] — R’, and continuous functions b RY = Rforj=1,...,J. Then x is the solution to
the system of ODEs in Equation 1 if and only if

Cj(fjvmvg) =0,V € {17"'5‘]}7 Vg € CI[O,T], 9(0)=9(T) =0

Proposition 1. (Hackbusch, 2017) Consider J € NT, T € R™, a continuously differentiable function
g, 7] — R, and continuous functions f; : R — R for j =1,...,J. Then x is the solution to

i in&rgfhtzdm’ nipiging yalueof this functional corresponds to
finding betteryapproximations of th'@ true( @ DKL) = 0
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D-CODE: theory

de(f, f7) :=||fox — fTox|la = [[(f — f7) o z[l2

Theorem 1. Consider J ¢ N*,j € {1,...,J}, T € R*. Let f* : R/ — R be a continuous function,
and let z : [0,T] — R’ be a continuously differentiable function satisfying & ;(t) = f*(x(t)).
Consider a sequence of functions (Z,), where T, : [0,T] — R” is a continuously differentiable
function. If (Z},) converges to x in L? norm. Then for any Lipschitz continuous function f

S
lim lim » Cj(f,&k,9s)* = da(f, f*)?, (M

S—o00 k—oc0
s=1

where {g1, ga, - - . } is a Hilbert (orthonormal) basis for L*[0, T| such that ¥i, g;(0) = ¢;(T) = 0
and g; € CI[O, T].
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D-CODE: theory

de(f, f7) :=||fox — fTox|la = [[(f — f7) o z[l2

Theorem 1. Consider J ¢ N*,j € {1,...,J}, T € R*. Let f* : R/ — R be a continuous function,
and let z : [0,T] — R’ be a continuously differentiable function satisfying & ;(t) = f*(x(t)).

Consider a sequence of functions (Z,), where T, : [0,T] — R” is a continuously differentiable
function. If (Z},) converges to x in L? norm. Then for any Lipschitz continuous function f

S
lim lim » Cj(f,&k,9s)* = da(f, f*)?, (M

S—o00 k—oc0
=]

where {g1, ga, - - . } is a Hilbert (orthonormal) basis for L*[0, T| such that ¥i, g;(0) = ¢;(T) = 0
and g; € Cl[O, T]

!,Qh van_der_Schaar
4L3¥ \LAB vanderschaar-lab.com
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D-CODE: theory

de(f, f7) :=||fox — fTox|la = [[(f — f7) o z[l2

Theorem 1. Consider J ¢ N*,j € {1,...,J}, T € R*. Let f* : R/ — R be a continuous function,
and let z : [0,T] — R’ be a continuously differentiable function satisfying & ;(t) = f*(x(t)).
Consider a sequence of functions (Z,), where T, : [0,T] — R” is a continuously differentiable
function. If (Z},) converges to x in L? norm. Then for any Lipschitz continuous function f

)
lim lim » Cj(f, &k, gs)* = do(f, f*)?, (7)

S—o00 k—oc0
=]

where {g1,ga, ... } is a Hilbert (orthonormal) basis for L*[0,T] such that Vi, g;(0) = ¢;(T) = 0 e Natural choice

and g; € C[0,T). gs(t) = /2/Tsin(smt/T)
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D-CODE: algorithm

Preprocessing Optimization
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D-CODE: algorithm

Preprocessing

! y1(t) )

yp (t)
t € {ty,t,, ..., T}
yi(t) e R/

Denoise & Interpolate

&Py van_der_Schaar
S \LaB
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D-CODE: algorithm

Preprocessing Optimization
y1(t) x4 (1)
' Estimate '
< 7 e
yp(t) Xp(t)
t €{ty,ty, ... T} t €[0,T]
yi(t) € R/ x;(t) e R/

We estimate trajectories,
notderivatives!

&Py van_der_Schaar ST UNIVERSITY OF
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D-CODE: algorithm

Preprocessing Optimization
r 3\ r 3\ 4
y1(t) x,(t) Cj(f,z,g) = / g(t)dt+/0 2 (t)g(t)dt
' Estimate ' \
< > > < N
' ' _a‘rgmln ZZ Cj f’m'L?gS
YD (t) /-x\D (t) =il a=1
. 7 . 7
t € {ty,t,, ..., T} € [0,T] System of | ODEs
yi(t) € R/ x;(t) e R/

£ \LAB

Gh van_der_Schaar
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D-CODE: algorithm

Preprocessing Optimization

r D - N

Y1 (t) x1 (t)

' Estimate '
< - > <

yp (t) zp (1)
\ J " J
t €{ty, t, ..., T} t €[0,T] - | |
y;(t) € R/ x;(t) € R/ Prespecified testing functions

gs(t) = [2/Tsin(smt/T)
Symbolic regression

&Py van_der_Schaar B UNIVERSITY OF
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D-CODE: experiments

Dynamical systems:

- Gompertz model

- Generalized logistic model
- Glycolytic oscillator

- Lorenz system

Benchmarks:
Two-step symbolic regression with
a) total variation regularized differentiation (SR-T)
b) spline-smoothed differentiation (SR-S)
c) Gaussian process smoothed differentiation (SR-G)

&Py van_der_Schaar
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D-CODE: Experiments

&(t) = —612(t) - log (f2()) ~ Gompertz Model asymmetric growth with saturation
)

&(t) = 01z(t) - (1 — =()"?) Generalized Logistic Model

Gompertz Model

a8 Varying noise level og Varying step size At Varying sample size N

o 1.0 l0{o—= = l0{—= & ¥

(a1

¢ 0.54 \\ 0.51 0.5 -

0}

o Jm

S 0.0+ 0.0, 0.0 : : : :

v 1072 1073 10° 1071 10° 25 50 75 100

a Generalized Logistic Model

o 1.0® T = =—=% 1.0- = . 3

a . Methods

¢ ——— | T

= 0.0 1, ; 0.0 - : : , — |~®= SRS

) 1071 10° 25 50 75 100 —e— SR-G
At N

2 B UNIVERSITY OF
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D-CODE: Experiments

Chaotic Lorenz system. The Lorenz system is a model system for chaotic dynamics, defined as:
CCl(t) = 91 (.’BQ (t) — T (t)), i‘g (t) =T (t) (92 — I3 (t)) — L9 (t), .733(t) =T (t).’EQ(t) - 93$3(t)

Success Prob. x;(t) Success Prob. x(t) Success Prob. xs(t)
1.0 1 1.0 1 1.01 g
—8— SR-T
0.51 0.5 \\ 0.5 1 —o— SRS
—8— SR-G
0.0, , : il VXV S 0-0“'I/\\ﬁ—1
0.10 0.15 020 025 0.30 010 0.15 020 0.25 0.30 0.10 015 020 0.25 0.30
Noise og Noise og Noise og .
chaotic &
Ground truth D-CODE SR-T Neural ODE H :
non-periodic systems
A 140
~20
20 o 55200
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D-CODE in action

Discover temporal effects of chemotherapy on tumor volume

1.0
- (QObserved
0.5 A1 /
0.0 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Dataset: 8 clinical trials on cancer patients
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D-CODE in action

Discover temporal effects of chemotherapy on tumor volume

1.0
—— Observed
0.5 /
0.0 = : . : . :
0.0 0.2 0.4 0.6 0.8 1.0
1.0
— D-CODE Dataset: 8 clinical trials on cancer patients
0.5 1
/
0.0 , | . | . The following two ODE:s are discovered by D-CODE and SR-T.
0.0 0.2 0.4 0.6 0.8 1.0
10— i(t) = 4.48t%x(t) + log(t); D-CODE
&(t) = 4z(t) log (tz(t)) log (tz(t) + 2t); SR-T
0.5
= SR-T
0.0 = : ; : : :
0.0 0.2 0.4 0.6 0.8 1.0
&Py van_der_Schaar B UNIVERSITY OF
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Discovery of governing equations using ML

Ordinary Partial
differential differential
equation equation

iR e y = f®) fan=c  T=f@n  Z-fpan

] T 1

Symbolic D-Code D-CIPHER
Metamodels [ICLR ‘22] [NeurlPS ’22
[NeurlPS ‘19, ’20] Al4Science

Workshop]



Problem solved?

Simple ODEs - Expert models

e.g. discovered by ML (D-CODE)
e.g. human-discovered equations - pharmacological models, physiological model etc.

Remaining challenges:
» Complex dynamics and high dimensionality
Partially observable
Incorrect
Incomplete

2 B UNIVERSITY OF
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We proposed ML-enabled Discovery Framework

F-
Machine Learning
Algorithms

Structural
inform knowledge

tﬁ& van_der_Schaar
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Impact: repurposing dexamethasone for COVID-19

* Dexamethasone: the first approved drug for COVID-19 treatment in the UK
* Well-documented immunosuppressive effect: Previously used for severe allergies, asthma, COPD
* Repurposing to COVID-19: a precision dosing problem

* Average treatment effect of 6mg flat rate is verified by clinical trials
» But the clinical practice is much more complex...

. Auto-immune Problem
Too High ‘ Cytokine Storm ‘ ﬁ

— E Precise medication to maintain
>

the right level of activation

Immune System
Activation
(unobservable)

Slow Recovery >,
Too Low ‘ Secondary Infections e ﬁ
B UNIVERSITY OF
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Bridge the gap between research lab and clinic

* Observable clinical variables
 PKPD models: well-studied in the lab
- Expert variables: not easily or routinely measured in the clinic

v
HOW to use Innate Immune Dex Concentration Dex Concentration
these PKPD Response 2| in Lung 25 in Plasma 3
models to l T
empower v

clinicians? [ Vil Load 24 J:{Ad;i);r:;ln;l;ne]

&Py van_der_Schaar ST UNIVERSITY OF
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ML solution

Integrating Expert ODEs into Neural ODEs:
Pharmacology and Disease Progression
[Qian, Zame, Fleuren, Elbers, vdS, NeurlPS 2021]

[ van_der_Schaar B UNIVERSITY OF
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Proposed solution: Latent Hybridization Model (LHM)

(A) Pharmacology (B) Machine learning model (C) Hybrid model
00
L X )
AE Iaboratory-sdetting %& clinical setting
Expert System Latent
Model of Hybridization
Neural Model
ODE
[+ 1Y _der_Sch I
%5! {"ZZB” e vanderschaar-lab.com lCJTl\\/fIEI?ES{[Ig((;)E



Latent Hybridization Model (LHM)

Simple System of — Latent
ODE Neural Hybridization
Model ODE Model

LHM - advantages

- expert variables and model provide additional insights to users (clinicians)

- provides links between the expert variables and the real-world (clinical)
measurements

- underlying model significantly improves sample efficiency

&Py van_der_Schaar B UNIVERSITY OF
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Latent Hybridization Model (LHM)

Simple System of = Latent
ODE Neural Hybridization
Model ODE Model

 LHM

» Expert model

« Latent variables learned by ML
 Observational time-series data

[ van_der_Schaar B UNIVERSITY OF
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Latent Hybridization Model (LHM)

LHM e
« Expert model z°(t),a(t); 6°)

« Latent variables learned by ML z™(t),2z°(t),a(t); 6™)
« Observational time-series data ( ),2™(t),a(t); v)

In LHM, we use observational data to learn
- the evolution of the unobservable latent variables

t@& van_der_Schaar 51 UNIVERSITY OF
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Latent Hybridization Model (LHM)

LHM e
« Expert model z°(t),a(t); 6°)

« Latent variables learned by ML z"(t),2z°(t),a(t); 6™)
« Observational time-series data ( ),2™(t),a(t); v)

In LHM, we use observational data to learn
- the relationship between measurements and all latent variables

t@& van_der_Schaar 51 UNIVERSITY OF
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Latent Hybridization Model (LHM)

« LHM

» Expert model

« Latent variables learned by ML
 Observational time-series data

Learn from data: Unknown coefficients

Estimate from data:

- Initial state of the patient zi(0)

- Variation in initial states reflects heterogeneity of patient population

&Py van_der_Schaar B UNIVERSITY OF
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LHM: Learning procedure

®

—)[ Encoder [—» @qs

Measurements
0:t
o V[0 : to] Oo
O O
i ) f >
0 History to i

Amortized Variational Inference

@8y van_der_Schaar 5B UNIVERSITY OF
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Use LHM to provide clinical decision support

Our case study: use of dexamethasone for COVID-19 patients in the ICU

400 +

300

100 1

&Py van_der_Schaar
S \LaB

x1: C-Reactive Protein

z7: Immune Response

z5: Dex Concentration

200 -

100 1

400 4

300

200

NS
0 50 100 150 200 O 50 100 150 200 O 50 100 150 200
x1: C-Reactive Protein z7: Immune Response z5: Dex Concentration
0 50 100 150 200 O 50 100 150 200 O 50 100 150 200
Hours after admission
[T UNIVERSITY OF
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Use LHM to provide clinical decision support

Table 1: Prediction accuracy (RMSE) on COVID-19 intensive care data under different training
sample sizes N. Prediction horizon // = 24 hours. The standard deviations are shown in the brackets.

&Py van_der_Schaar
S \LaB

Method \ Ny

100

250

500

1000

Expert
Residual
Ensemble
NODE
ODE2VAE
GRU-ODE
Time LSTM
LHM

0.718 (0.71)
0.958 (0.63)
0.707 (0.60)
0.662 (0.65)
0.674 (0.62)
0.722 (0.60)
0.706 (0.63)
0.633 (0.51)

0.704 (0.02)
1.003 (0.03)
0.657 (0.05)
0.659 (0.02)
0.666 (0.02)
0.673 (0.05)
0.649 (0.03)
0.605 (0.02)

0.702 (0.02)
0.717 (0.05)
0.628 (0.05)
0.644 (0.05)
0.643 (0.02)
0.623 (0.05)
0.600 (0.03)
0.529 (0.02)

0.713 (0.01)
0.635 (0.04)
0.599 (0.05)
0.650 (0.04)
0.619 (0.02)
0.601 (0.05)
0.631 (0.02)
0.511 (0.02)
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Problem solved?

ODEs (Neural ODEs) are fundamentally inadequate to model systems with
more general temporal dynamics such as long-range dependencies or
discontinuities

In medicine/science, there are many types of differential equations (DEs)

E.g. Delay Differential Equation (DDE) and Integro-Differential Equation (IDE) -
a natural way of capturing the impact of history

(5 B UNIVERSITY OF

QP CAMBRIDGE
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Table 1. Families of DEs captured by Neural Laplace.

Clinical DE examples Model Equation
ODE x = £(t,x(t))
DDE x = f(t,x(t),x(t — 7)), 7 € RT
Dataset IDE % = £(t,x(t)) + [ h(r, x(7))dr

Forced ODE x = f(¢,x(t), u(t))
Stff ODE % = f(t,x(t)), 31, j, & > #;

« ODE: PK/PD (pharmacokinetic/pharmacodynamic) models (Koch et
al., 2014).

- DDE: Delayed PK/PD models (Koch et al., 2014), Cardiac Tissue
models (Moreira Gomes et al., 2019).

» IDE: Epidemic models (ElI-Doma et al., 1987).

» Forced ODE: Forced oscillation in bio-engineering (Oostveen et al.,
2003).

« Stiff ODE: Healthcare analytics (Rackauckas et al., 2022).



Clinical DE examples

Table 1. Families of DEs captured by|Neural Laplace,

Model Equation

ODE x = f(t,x(1))

IDE x = f(t,x(t)) + [ h(r,x(1))dr
Forced ODE x = f(¢,x(t),u(t))

Stiff ODE x = f(t,x(¢)),3, 5,2, >




A unified approach to capture many types of DE

Neural Laplace: models broad range of DEs in Laplace domain
[Holt, Qian, vdS, ICML 2022]

Does not require the user to specify the class of DE a priori
Appropriate class of DE determined implicitly, in a data-driven way.
Significantly extends flexibility and modeling capabilities of Neural ODEs

2 B UNIVERSITY OF
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Other ways to hybridize/combine expert-models?

a) b)
Patient
Demographics
Predicted
Models
Weights
‘ Naive
‘ A New Patient =nsemble
M,
aﬁh. van_der_Schaar [F T UNIVERSITY OF
J.f,i.‘ \LAB vanderschaar-lab.com 3P CAMBRIDGE




Synthetic Model Combination

a | b " o
dihs . D &N O£ 8& B

’ — A NOIA

!. * N Weights \ l |
AN | Pci S oM
\A Ml - e, New Patient & &

A. Chan, vdS, “Synthetic Model Combination: An Instance-wise Approach
to Unsupervised Ensemble Learning”, NeurlPS 2022

- Novel representation learning for handling sparse high-dimensional domains
- Uses ideas from synthetic control

2 B UNIVERSITY OF
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Synthetic Model Combination

b) _ o o
e ™ & H £ & %
Fadeed N\ AL NN
Weights \ l \ |

\% New Patient & Enh;:]:r’\ile & o

A. Chan, R. Peck, M. Gibbs, vdS, “Synthetic Model Combination: A new
machine learning method for pharmacometrics ensembling”, Clinical
Pharmacology 2023

- Demonstrated use for precision dosing of Vancomycin

2 B UNIVERSITY OF
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Summary: We proposed ML-enabled Discovery Framework

Machine Learning
Algorithms
8

J

discover

Py van_der_Schaar
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Summary: We proposed ML-enabled Discovery Framework

F-
Machine Learning
Algorithms

Structural
inform knowledge

tﬁ& van_der_Schaar
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Machine learning for clinical trials

Step 1 Step 2 Step 3 Step 4
Causal ML Treatment Effect Estimation

Reinforcement Learning

Determining endpoints /Multi-Armed Bandits Predicting personalized response Refining guidelines
(timing, dosage, etc.)
q Determining dosage Subpopulation analysis Indication expansion
Transfer Learning
Incorporating observational data Discovering drug combinations 3 . .
_ S Time Series Analysis
Incorporating pre-clinical data Identifying “good” subpopulations Effect and impact on comorbidity
Incorporating cross-trial results Recruiting the “right” patients Competing risk analysis Modeling disease progression

Optimal Design Inverse Reinforcement Learning Few-Shot Learning
Optimal design of trials Retaining recruited patients Combining models (e.g. PKPD) Rapid deployment
Synthetic Data

Streamlining data sharing . . Tt .
i -clini -tri Facilitating RWD access and analysis
Augmenting pre-clinical/cross-trial data Ay Anonymizing results for reporting g y




Randomized controlled trials

« Gold standard for showing efficacy
 Problem: Hard to adapt their design

Usually targets only one population
Motivating Scenario

* Treatment is effective for a subpopulation
but ineffective for the overall population

 RCT targeting . Treatment being denied for
the overall population the subpopulation

&Pl van_der_Schaar ST UNIVERSITY OF
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Adaptive experiment designs

Experiment Design When? Which?

RCT Never Only the initial population

A. Huyuk, Z. Qian, vdS, When to make & break commitments?
ICLR 2023

et_“-‘h. van_der_Schaar B UNIVERSITY OF
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Optimal Commitment Problem

* A new type of optimal stopping/switching problem
« Setup: Experiment with design ¢ is launched:

(X2, ¥2) (x3,¥3)

(x1,¥1)
1) Continual costs:

—Cy —Cy —Cy

2) Uncertain reward:
3) Not possible to modify !

&Py van_der_Schaar
E \LAB

»{

vanderschaar-lab.com

(X2 V1) success?
— C ll)
+Ry,  Iff success

Y (continue the trial)
' (switch to an alternative trial)

¢ (stop)
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OCP as a reinforcement learning problem

« State s; = (active design 1);, mean outcomes {0, },¢cx)
Transition function 7':

Y41 = action a; € {0, Y, Y, YP" ...}

Observations w; = (population x;, outcome y;)
Observation function O:

Xe~Pe, Ve~ N(thraz)

Reward function:

e = —Cy, + Ry, &{‘wbt =Y q == l/)t—T+1}J'£(xt—r:tr yt—r,tL
~ ~
commitment success criteria

until z-samples collected

&Py van_der_Schaar ST UNIVERSITY OF
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Warm-up: When to break a single commitment?

* One population/design a; € { stop @, continue Y}

« Observations: ye ~N(0,0% =1)
e = Qu<e Ye)/t

 Reward function: . =—-C+R-1{t =t} I{u, > 0}

! !

commitment success criteria
until z-samples collected

t@h van_der_Schaar
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g;s_%g UNIVERSITY OF
4P CAMBRIDGE



Value function is non-convex

]

9[- V=10 —— 9 9
~ -t : r V(=2 £
£ N (t=2,p) £ s
B o 6 > 6 v V*(t=3,p)
=] = =
= = s
E Es / E3
=3 = / B
<] o 7 o ‘_/

0I = D-I
-1.5 -1 -0.5 0 0.5 1 15 2 —-1.5 -1 —0.5 0 0.5 1 1.5 2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Test Statistic (1) Test Statistic (1) Test Statistic (y2)

- >
less likely to succeed more likely to succeed
(limV*=0) (limV*=R—2C)

« POMDP solvers that rely on convex function approximators are not feasible!
 Thereis a threshold u; for stopping

&Py van_der_Schaar ST UNIVERSITY OF
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Optimal solution is optimistic

* Greedy approach: Stop iff R-P{u,>0lu;}—C-(t—1t) <0

(equivalently, u, < u;

greedy)

0 {In this }egion, both 7* and 7#% contintie
I — Y SV

In this region,

Test Statistic (u)

17

—-1.0 both 7 and 'frg“_edy stop |
all experimentation —e— Threshold s
- greedy
_15® | | | | | Thres:.hold % :
1l 3 9 7 9 11 13 15
Time Step (%)

!ﬁ van_der_Schaar
%5 \LAB vanderschaar-lab.com

(Optimal solution
has a lower threshold)
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Optimal solution is /ncreasingly less optimistic

0 Hn this }egion, both 7* and 7% continue
/_‘,’ﬁ— —A——A——%
= eedy toPS, es!
~ e ntl“
_8 _0-5 71%0"1( Co =
=
c% In this region,
2 —1.0 ~both 7* and 7&*% stop -
O all experimentation
= P e Threshold
iy | —#— Threshold p&*% |
| | | I I T
| ‘ I I T T I
o 1.5 ~0~ True threshold gap |} — Y| | |
S —— Upper bound in Proposition 4
= 1.0  —
=)
=
[}
= 0.5
=
0

11 13 15 17

Time Step (%)

!Qh van_der_Schaar
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(The gap between
thresholds decreases)
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Bayes-OCP

Algorithm 1

1: Initialize p, and o2 forall z € X
2. X+ X, Dy+ 2
3: Start experiment ¢ = (X, T, p)

4: loop:
5: Observe z1, ¥¢; Dy + Di—1 U {ze, ys } }

6: 1/02, « 1/02, +1 Bayesian posterior
T Py < Pay + (Yt — tu’mt)agt

(i) Identify a candidate subpopulation X' to replace X : \
8: X'+

9: while X \ X’ D @:

10: T" ¢ argmax,c x\ x’

Eo,~nine 0 [97 (X ULz} {6:D] 3 |dentifying a candidate experiment

1 i E g, (ua o) [0 (X' U "} {6:})] « (combinatorial search)
> EemNN(,um,ag)[g(o) (X'; {6=1)]:

12: X'+ X' U{z*}

13: else: break y

(ii) Decide whether to actually replace X with X':
140 Py, p(u 021GV (X {6:)

N e o G(X,Di; {6:1)} > B: Comparing the candidate and
: +~ X', — @ : .
16: Start a new exgerimcnn,b = (X, T p) ongoing expenments

&Py van_der_Schaar B UNIVERSITY OF
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ML and related techniques can address many of them

Stage 2 Stage 3 Stage 4
Causal ML Treatment Effect Estimation

Reinforcement Learning

Determining endpoints /Multi-Armed Bandits Predicting personalized response Refining guidelines
(timing, dosage, etc.)
q Determining dosage Subpopulation analysis Indication expansion
Transfer Learning _
Incorporating observational data Discovering drug combinations - . .
_ 8 e Time Series Analysis
Incorporating pre-clinical data Identifying “good” subpopulations Effect and impact on comorbidity
Incorporating cross-trial results Recruiting “right” patients Competing risk analysis Modeling disease progression

Optimal Design Inverse Reinforcement Learning Few-Shot Learning
Optimal design of trials Retaining recruited patients Combining models (e.g. PKPD) Rapid deployment
Synthetic Data

. .. . Streamlining data sharing .. . TP .
- - Facilitating RWD access and analysis
Augmenting pre-clinical/cross-trial data itV e b O s ] Anonymizing results for reporting g \%



Engagement sessions: Inspiration Exchange

Online engagement sessions for ML
researchers in healthcare; themed
presentations & Q&A

individualized treatment effect inference (2/2)

ge - individualized treatment effect inference (1/2)
Inspiration Exchange

https://www.vanderschaar-lab.com/

for
(particularly masters, Ph.D, and post-docs).

‘We would ke to:
- s makhin beaening mocels and exhikies

- Engagement sessions
- Inspiration Exchange e

= spark rew peojects wnd colaborations

iration Exchange - recent projects in machine learning for healthcare
i Lab
iration Exchange - software packages for automated machine learning

Subscribe & join us!

iration Exchange - automated machine learning pipelines
Lot

Inspiration Exch:
van g Scnasi Lab
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