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We have complicated data; we want to make sense of it.




PROBABILISTIC MACHINE LEARNING/BAYESIAN STATISTICS

> Statistical methods that connect domain knowledge to data.

> Goal: A methodology that is expressive, scalable, easy to develop



Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei 2013]
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Topics found in 1.8M articles from the New York Times

[Hoffman+ 2013]



Population analysis of 2 billion genetic measurements

[Gopalan+ 2016]




Neuroscience analysis of 220 million fMRI measurements

[Manning+ 2014]
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(Fancy) discrete choice analysis of 5.7M purchases

[Ruiz+ 2020]
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Inferring the dust map from astronomical data

[L. Anderson+ 2022]



The probabilistic pipeline
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» Customized data analysis is important to many fields.

> Probabilistic ML separates assumptions, computation, application

> Eases collaborative solutions to ML/statistics problems




The probabilistic pipeline
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> Posterior inference is the key algorithmic problem.

> Answers the question: What does this model say about this data?

> Today: Scalable and general approaches to posterior inference




Criticize the model
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[Box, 1980; Rubin, 1984; Gelman+ 1996; Blei, 2014]



Probabilistic machine learning / Bayesian statistics

» Probabilistic model: joint distribution of hidden variables z and observations x,
p(z,x)

> Inference about the unknowns is through the posterior, the conditional distribution of
the hidden variables given the observations

p(z,x)
p(x)

p(z|x) =

(Note: There is no need to “be Bayesian” to calculate a posterior.)

P For most interesting models, the posterior is not tractable.
We appeal to approximate posterior inference.



Structure [pritchard+ 2000]
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» A popular model for population genetics

» The data are (unphased) alleles at L locations.

> The posterior 8; uncovers per-individual ancestry used, e.g., in causal adjustment.



Poisson factorization [Gopalan+ 2015]
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U, ~ gamma(a, b) E=1...K
;i ~ gamma(c, d) 1=1...n
T;; ~ poisson (D, UirVjk) j=1...m

» A good model for recommendation systems
> Rows % are users ; columns 7 are items ; each z;; is the number of clicks.

P Posterior per-row variables uncover user preferences.
Posterior per-column variables uncover item attributes (like genre)



Latent Dirichlet allocation [Blei+ 2003]
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B ~ dirichlety (1) k=1...K
6, ~ dirichletk (o) i=1...m
25 ~ cat(8;) j=1l...n

zi; ~ cat(pz,;)

» A mixed-membership model of documents, a.k.a. a topic model.
> Posterior B1.x are topics, each a distribution over the vocabulary.

» The topics reflect themes that run through the collection.



Deep generative models [Kingma and Welling 2014, Rezende+ 2014]
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z; ~ poisson(nn(z; ; 9)) nn : RX — R?

» A neural network eats a latent variable to produce the observed data.
> This is a very flexible class of models of distributions p(z) = [ p(z)p(z|z)dz.

> Inference is on neural network parameters and latent representations.



Probabilistic machine learning / Bayesian statistics

» Probabilistic model: joint distribution of hidden variables z and observations x,
p(z,x)

> Inference about the unknowns is through the posterior, the conditional distribution of
the hidden variables given the observations

p(z,x)
p(x)

p(z|x) =

(Note: There is no need to “be Bayesian” to calculate a posterior.)

P For most interesting models, the posterior is not tractable.
We appeal to approximate posterior inference.



Variational inference

palx),

7 KL(g(z:v*) || p(a| %)

» VI solves inference with optimization.
(Contrast this with MCMC.)

> Posit a variational family of distributions over the latent variables,
q(z;v)

> Fit the variational parameters v to be close (in KL) to the exact posterior.



Example: Mixture of Gaussians
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[images by Alp Kucukelbir; Blei+ 2017]



Today: Stochastic optimization makes VI better

palx)

7 KL(q(z:v*) || plz| %)

P Stochastic VI scales up VI to massive data. [Hoffman+ 2013]

> Black box VI generalizes VI to a wide class of models. [Ranganath+ 2014]



Stochastic Variational Inference



The probabilistic pipeline
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How can we scale up variational inference to massive datasets?




Conditionally conjugate models

Global variables R 'B

Xi
Local variables . l

p(B,2,x) = p(B) Hp(zi,mi |8)

» The observations are X = 1.y,.
P The local variables are z = 21.p,.
» The global variables are 5.

» The tth data point ; only depends on z; and 5.

Compute p(f8, z | x).



Conditionally conjugate models

Global variables R 'B

Xi
Local variables . l

n

p(B,2,%) = p(B) | | p(zi, 2| B)

=1

» Complete conditional:
The distribution of a latent variable given the observations and other latent variables.

> Assume each complete conditional is in an exponential family [Brown 1986; Efron 2022] ,

p(zi | B, z;) = expfam(z; ; n¢(B, z:))
p(B | z,x) = expfam(B ; ny(z,x)),

where expfam(z ; n) = h(z) exp{n"t(z) — a(n)).



Conditionally conjugate models

Global variables R '3

Local variables

.xt

p(B,2z,x) =

P Bayesian mixture models

P Time series models
(HMMs, linear dynamic systems)

P Factorial models

P Matrix factorization
(factor analysis, PCA, CCA)

n

=1

>

>

p(B) | [ p(zi | B)

Dirichlet process mixtures, HDPs

Multilevel regression
(linear, probit, Poisson)

Stochastic block models

Mixed-membership models
(LDA and some variants)



Variational inference

p(z]x)

7 KL(g(z:v*) || p(a| %)

Minimize KL between g(8, z; v) and the posterior p(8, z | x).



The evidence lower bound

£(v)=  Egllogp(B,z,x)] — E[logg(f,z;v)]

Expected complete log likelihood Negative entropy

P KL is intractable; VI optimizes the evidence lower bound (ELBO) instead.

— ltis a lower bound on log p(x).
— Maximizing the ELBO is equivalent to minimizing the KL.

P> The ELBO trades off two terms.

— The first term prefers g(-) to place its mass on the MAP estimate.
— The second term encourages ¢(+) to be diffuse.

P> Caveat: The ELBO is not convex.



Mean-field variational inference

Qﬂ A O—~()p

ELBO

¥
zi (@) xi ¢i O ) zi
n

> The form of (8, z) defines the variational family.

» The mean-field family is fully factorized,
n
9(B,2; X, ¢) = a(B; N) [ [ az:; ¢0)-
=1

> Each factor is the same family as the model’s complete conditional.

p(B|2,x) = expfam(B ; n4(z,x))
q(B; A) = expfam(f; )



Mean-field variational inference

Qﬂ A O—~()p

ELBO
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P Optimize the ELBO,
£(A, ¢) = Eq [log p(B, z,x)] — Eq [logq(B,2)] -
» Traditional VI uses coordinate ascent
A" =g [n4(2,%)]; 8] = Ex [ne(B, )]
It iteratively updates each parameter [Ghahramani and Beal, 2001] .

> Notice the relationship to Gibbs sampling [Gelfand and Smith, 1990] .



Coordinate ascent variational inference

Input: data x, model p(3, z, x).
Initialize A randomly.
while not converged do

for each data point 1 do
Set local parameter

¢i  Ex[me(B,21)] -

end

Set global parameter

A= a4 2 By, [H(Zi, )]

end




Example: Mixture of Gaussians
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[images by Alp Kucukelbir; Blei+ 2017]



Stochastic variational inference

P Classical VI is inefficient:

— Do some local computation for each data point.
— Aggregate these computations to re-estimate global structure.
— Repeat.

> Stochastic variational inference (SVI) scales VI to massive data.



Stochastic variational inference

GLOBAL HIDDEN STRUCTURE
MASSIVE
DATA

PR
AS

Subsample Infer local Update global
data structure structure



Stochastic optimization

A STOCHASTIC APPROXIMATION METHOD'

By HerBErT RoBBINS AND SuTToN MoONRO
Unaversity of North Carolina

1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M (z) is assumed to be a monotone function of = but is
unknown to the experimenter, and it is desired to find the solution z = 6 of the
equation M(x) = a, where o is a given constant. We give a method for making
successive experiments at levels #; , z2 , - - - in such a way that z, will tend to 6 in
probability.

» Replace the gradient with cheaper noisy estimates [Robbins and Monro, 1951]
> Guaranteed to converge to a local optimum [Bottou, 1996]

P This algorithm has enabled modern machine learning.



Stochastic optimization

A STOCHASTIC APPROXIMATION METHOD'
By HerBErT RoBBINS AND SuTToN MoONRO
Unaversity of North Carolina

1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M (z) is assumed to be a monotone function of = but is
unknown to the experimenter, and it is desired to find the solution z = 6 of the
equation M(x) = a, where o is a given constant. We give a method for making
successive experiments at levels #; , z2 , - - - in such a way that z, will tend to 6 in
probability.

> Use noisy gradients to update

~

viy1 = ve + peVy, L(1y).

> Requires unbiased gradients E [ﬁ,, :C(I/)} =V, £v)

» Requires the step size sequence p; follows Robbins-Monro conditions
(Modern methods involve more sophisticated step-size schedules.)



The complete conditional of the global variable

» The complete conditional of the global variable is

p(B|2z,x) = expfam(B; n,(z,x))
T]g(Z,X) =a+ E?:l t(zi’mi)’

where t(+, -) is a function and « is the hyperparameter to the prior.

(This is from classical theory of conjugate priors [Diaconis and Ylvisaker 1979].)

» The coordinate ascent update is

N = a3 By [H(Zi3:)]

> For large datasets, this update is expensive.



Stochastic variational inference

» The natural gradient of the ELBO [Amari, 1998; Sato, 2001; Hoffman+ 2013] :

VA*EN) = (o + 27 Egr [6(Z5, 24)]) — A

» Construct a noisy natural gradient:

J ~ Uniform(1,...,n)

V3*L(A) = a + nkg[t(Z;, ;)] — X

> It is good for stochastic optimization.

— lts expectation is the exact natural gradient (unbiased).
— It only depends on optimized parameters of one data point (cheap).



Stochastic variational inference

Input: data x, model p(3, z, x).

Initialize A randomly.

Set p; appropriately.

while not converged do
Sample 7 ~ Unif(1,...,n).

Set local parameter

¢+ Ex[ne(B,z5)].

Set intermediate global parameter

A =a+nky[t(Z5,z5)].

Set global parameter

A:(l—pt))\-i-pt)\.

end




Latent Dirichlet allocation [Blei+ 2003]
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zi; ~ cat(pz,;)

» A mixed-membership model of document collections, a.k.a. a topic model
> Posterior B1.x are topics, each a distribution over the vocabulary.

» The topics reflect themes that run through the collection.



Stochastic variational inference for LDA
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[Hoffman+ 2010]
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Topics using the HDP, found in 1.8M articles from the New York Times

[Hoffman+ 2013]



Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei 2013]



Population analysis of 2 billion genetic measurements

[Gopalan+ 2016]




Precursors and related work, especially about online EM

» A view of the EM algorithm that justifies incremental, sparse, and other variants
[Neal and Hinton 1998]

P Convergence of a stochastic approximation version of the EM algorithm
[Delyon+ 1999]

> Online model selection based on the variational Bayes
[Sato 2001]

> Unsupervised variational Bayesian learning of nonlinear models
[Honkela and Valpola 2003]

P On-line expectation-maximization algorithm for latent data models
[Cappe and Moulines 2007]

» Online EM for unsupervised models
[Liang and Klein 2009]]



SVI scales many models

Infer local
structure

Update global
structure

Subsample
data

P Bayesian mixture models P Dirichlet process mixtures, HDPs
» Time series models > Multilevel regression
(HMMs, linear dynamic systems) (linear, probit, Poisson)
P Factorial models P Stochastic block models
P Matrix factorization »  Mixed-membership models

(factor analysis, PCA, CCA) (LDA and some variants)



Black Box Variational Inference



A.1 Computing E[log(0; )]
The need to compute the expected value of the log of a single probability component under the
Dirichlet arises repeatedly in deriving the inference and parameter estimation procedures for LDA.
‘This value can be casily computed from the natural parameterization of the exponential family
representation of the Dirichlet distribution.

Recall that a distribution is in the exponential family if it can be written in the form:

Pleln) = hx)exp {0 T(x) = A}

where 1 is the natural parameter, T'(x) is the sufficient statistic. and A(n) is the log of the normal-
ization factor.
We can wite the Dirichlet in this form by exponentiating the log of Eq. (1)

P(8]0) = exp{ (41 (e — 1)logh) +logT (34, a7) — 3k, logT'(ax) }

From this form, we immediately see that the natural parameter of the Dirichlet is n; = a; — 1 and
the sufficient statistic is 7'(6;) = log8;. Furthermore, using the general fact that the derivative of
the log normalization factor with respect to the natural parameter is equal to the expectation of the
sufficient statistic, we obtain:

Ellog0; ] = W(a) ~ W (3§ )

where W is the digamma function, the first derivative of the log Gamma function.
A.3.2 VARIATIONAL DIRICHLET
Next, we maximize Eq. (15) with respect to y;, the ith component of the posterior Dirichlet param-

eter. The terms containing y; are:

N

o= 1) (W)~ (S 1)) + 2 i (P0) — ¥ (S-1v))

&

=) () -

=1

—logI (Sy1)) +logl(y) - W (S5avy)

This simplifies to:
.
Ly= 2 (W) W (S42177)) (ctr+ Sy bui —11) —logT (S, v7) +log ()
We take the derivative with respect to y;:

aL

«
o =W (5) (cti+ SN 0w i) = W (Sho 1) EI [CIEDHETNEETN
i £

Setting this equation to zero yields a maximum at:

i+ S i an

Vi=

Since Eq. (17) depends on the variational multinomial ¢, full variational inference requires
alternating between Egs. (16) and (17) until the bound converges.

Finally, we expand Eq. (14) in terms of the model parameters (ct, ) and the variational parameters
(+.6). Each of the five lines below expands one of the five terms in the bound:

. .
Ly ¢;0.B) =logl (35 ) — Xlogl‘(u,) + 2(“’ = 1) (W) -2 (35vy)

+22lwm (W)~ (She1v))

Y
v
2 lz}jmw log i (1)

K

= D= 1) (W)~

«
~logP'(3].1)) + Y logIyi) — w(shv)
“

Nk
- 2 2@ log .

where we have made use of Eq. (8).
In the following two sections, we show how to maximize this lower bound with respect to the
variational parameters  and .

A.3.1 VARIATIONAL MULTINOMIAL

We first maximize Eq. (15) with respect to ¢, the probability that the nth word is generated by
latent topic i. Observe that this is a constrained maximization since 3%, ¢, = 1.

We form the Lagrangian by isolating the terms which contain ¢, and adding the appropriate
Lagrange multipliers. Let s, be p(w) = 1|2/ = 1) for the appropriate v. (Recall that each w, is
a vector of size V with exactly one component equal to one; we can select the unique v such that

wh=

Lig,) = b (W) =W (S517))) + 0uilogBiv — duilogu + b (5510 — 1),

where we have dropped the arguments of L for simplicity. and where the subscript ¢, denotes that
we have retained only those terms in L that are a function of ;. Taking derivatives with respect to
Qni- we obtain

aL
i

=W(1i) W (351 vj) +logBi — logdy — 1+

Setting this derivative to zero yields the maximizing value of the variational parameter ¢ (cf. Eq. 6):

ui o Bavexp (W) = (Shorv)) - (16)

[from Blei+ 2003]



Black box variational inference

REUSABLE
VARIATIONAL
FAMILIES

ANY MODEL

G

OO0

MASSIVE
DATA

BLACK BOX
VARIATIONAL
INFERENCE

P Easily use variational inference with any model; no more appendices!

P Perform inference with massive data

P No mathematical work beyond specifying the model



Nonconjugate models

Global variables R 'B

Zi Xi

Local variables
n

n

p(ﬁ)zix) = p(ﬂ) Hp(zh‘ri |ﬂ)

i=1
» Nonlinear time series models > Discrete choice models
» Deep latent Gaussian models P Bayesian neural networks
» Models with attention » Deep exponential families
P Generalized linear models P Correlated topic models
P Stochastic volatility models > Sigmoid belief networks



Black box variational inference

£(v)=  Egllogp(B,z,x)] — E[logg(B,z;v)]

Expected complete log likelihood Negative entropy

The main idea behind BBVI:

P write the gradient of the ELBO as an expectation
> sample from g(-) to form a Monte Carlo estimate of the gradient

P use the MC estimate in a stochastic optimization



Black box variational inference

£(v)=  Egllogp(B,z,x)] — E[logg(B,z;v)]

Expected complete log likelihood Negative entropy

P Keep in mind the black box criteria.
> We should only need to:

— sample from g(8, z)
— evaluate things about g(8, z)
— evaluate log p(g, z, X)

> These criteria let us perform approximate inference on many models.



BBVI # 1: The score gradient

V, £ = Eqg(2:)[ V. log q(z; v) (log p(x,2z) — log q(z; v))]

score function instantaneous ELBO

P Use the score function to write the gradient as an expectation.
[Ji+ 2010; Paisley+ 2012; Wingate+ 2013; Ranganath+ 2014; Mnih+ 2014]

P Also called the likelihood ratio or REINFORCE gradient
[Glynn 1990; Williams 1992]

» Pushes v to give high probability on z with large instantaneous ELBO.



BBVI # 1: The score gradient

V, £ = Eqg(2:)[ V. log q(z; v) (log p(x,2z) — log q(z; v))]

score function instantaneous ELBO

Satisfies the black box criteria — no model-specific analysis needed.

> sample from g(z; v)
> evaluate V, logg(z; v)

> evaluate log p(x, z) and log q(z)



Score-gradient black box variational inference

Input: data x, model p(z, x).

Initialize v randomly.

Set p; appropriately.

while not converged do

Take S samples from the variational distribution

z[s] ~q(z;v) s=1...8

Calculate the noisy score gradient

S
G = 5 O Vi loga(ls) ve)(log plx, 2ls]) — log a(zls) )

Update the variational parameters

Vi1 = Vi + pe Gs

end




BBVI: Making it work

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

ANY MODEL

BLACK BOX r(B.z]x)
VARIATIONAL

50
O\ INFERENCE
O—-0—-0

P Control the variance of the gradient [e.g., Paisley+ 2012; Ranganath+ 2014]
— Rao-Blackwellization, control variates, importance sampling
P Adaptive step sizes [e.g., Duchi+ 2011; Kingma and Ba 2014; Kucukelbir+ 2016]

P SVI, for massive data [Hoffman+ 2013]



Deep exponential families
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Empirical study of DEFs

JJ |

1
\ i i i
N e R
al

i

» NYT and Science (about 150K documents in each, about 7K terms)
» Many models: adjusted depth, types of latents, priors, and link

P Held-out perplexity (lower is better) [wallach+ 2009



DEF evaluation

Model p(w) NYT Science
LDA [Blei+ 2003] 2717 1711
DocNADE [Larochelle+ 2012] 2496 1725
Sparse Gamma 100 ] 2525 1652
Sparse Gamma 100-30 r 2303 1539
Sparse Gamma 100-30-15 T 2251 1542
Sigmoid 100 0 2343 1633
Sigmoid 100-30 N 2653 1665
Sigmoid 100-30-15 N 2507 1653
Poisson 100 0 2590 1620
Poisson 100-30 N 2423 1560
Poisson 100-30-15 N 2416 1576
Poisson log-link 100-30 r 2288 1523
Poisson log-link 100-30-15 T 2366 1545




Neuroscience analysis of 220 million fMRI measurements

[Manning+ 2014]



BBVI #2: The reparameterization gradient

> Suppose log p(x, z) and log g(z) are differentiable with respect to z.
P Suppose the variational distribution can be written with a transformation,
€ ~ s(e)

z = t(e,v)

=z~ q(z;v).

For example,

€ ~ Normal(0, 1)
Z=€0+ U

— z ~ Normal(y, o?).

» The variational parameters are part of the transformation.
But they are not involved in the “noise” distribution.



BBVI #2: The reparameterization gradient

V., & = Eqe | Va[log p(x,2) — log q(z; )] V., t(e, v)

gradient of instananeous ELBO  gradient of transformation,

P This is the reparameterization gradient, another tool for BBVI.
[Glasserman 1991; Fu 2006; Kingma+ 2014; Rezende+ 2014; Titsias+ 2014]

» Can use autodifferentiation to take gradients (especially of the model)

P Can use and reuse different transformations [e.g., Naesseth+ 2017]



Black box variational inference

Input: data x, model p(z, x).

Initialize v randomly.
Set p: appropriately.
while not converged do

Take S samples from the auxillary variable

es~s(e) s=1...8

Calculate the noisy gradient
s

. 1
gt = 3 Z vz[]-ng(X)t(GSa Vn)) — log Q(t(es; Vn)§ Vn)]vut(fm Vn)

s=1

Update the variational parameters

Vit1 = Vi + pe Gt

end
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Shopper on 5.7M purchases.

[Ruiz+ 2017]



Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ 2017]



Discussion



PROBABILISTIC MACHINE LEARNING

» ML methods that connect domain knowledge to data.
» Provides a computational methodology for analyzing data

P Goal: A methodology that is expressive, scalable, easy to develop



The probabilistic pipeline

ASSUMPTIONS &
KNOWLEDGE & DATA
QUESTION
Build a model Discover patterns Predict & Interpret
C-0-0 . .

|I||I|I|IIII M | M

> Posterior inference is the key algorithmic problem.

> Answers the question: What does this model say about this data?

» VI provides scalable and general approaches to posterior inference




Stochastic optimization makes VI better

palx)

7 KL(q(z:v*) || plz| %)

P Stochastic VI scales up VI to massive data.

» Black box VI generalizes VI to a wide class of models.



What classes of models can VI handle?

p(z[x)

" KL(g(z:v*) || p(z] %)

P Conditionally conjugate [Gharamani and Beal 2001; Hoffman+ 2013]
» Not T, but can differentiate the log likelihood [Kucukelbir+ 2015]
» Not T, but can calculate the log likelihood [Ranganath+ 2014]

» Not T, but can sample from the model [Ranganath+ 2017]



How can we expand the variational family?

palx),

" KL(q(zv*) || p(z| %)

P Structured variational inference [Saul and Jordan 1996; Hoffman and Blei 2015]
P Variational models [Lawrence 2001; Ranganath+ 2015; Tran+ 2015]
> Amortized inference [Kingma and Welling 2014; Rezende+ 2014]

P Sequential Monte Carlo [Naesseth+ 2018; Maddison+ 2017; Le+ 2017]



Which distance should we use? How good is it?

p(z[x)

" KL(g(z:v*) || p(z] %)

> The “inclusive” KL(p||q) Minka 2001; Naesseth+ 2020]
P> Generalized variational inference [Knoblauch+ 2019]
P Operator variational inference [Ranganath+ 2016]

P x-variational inference [Dieng+ 2017]



Can we make the algorithm better?

palx)

7 KL(g(zv*) || plz| %)

P SVI and structured SVI [Hoffman+ 2013; Hoffman and Blei 2015]
> Stochastic gradient descent as variational inference [Mandt+ 2017]

> Adaptive rates, averaged gradients, control variates, ... [Many papers]



What is guaranteed about VI?

p(z]x)

7 KL(g(z:v*) || p(a| %)

> Asymptotic normality of Gaussian approximations [Hall+ 2011]
P Risk bounds for VI [Pati+ 2017]
» Bernstein Von-Mises, model misspecification [Wang and Blei 2019, 2020]

P Convergence rates for VI [Alquier+ 2016, Zhang and Gao 2019]



How can we use VI in practice?

p(z]x)

/KL v") || plz| %)

> Correct for VI's underestimates of the posterior variance [Giordano+ 2015]
P Probabilistic programming [Minka 2014, Kucukelbir+ 2016, Bingham-+ 2018, others]
» Best practices for running VI robustly across many models

P How to check variational inferences
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